Journal of Materials Science

, Volume 47, Issue 2, pp 535–552 | Cite as

Silicon nitride: the engineering material of the future

  • Zoran Krstic
  • Vladimir D. Krstic
Anniversary Review


The purpose of this review is to present the recent developments in silicon nitride (Si3N4) ceramics and to examine the achievements regarding our understanding of the relationship between processing conditions, chemical composition, microstructure and mechanical properties of Si3N4. Si3N4 is one of the most important structural ceramics because it possesses a combination of advanced properties such as good wear and corrosive resistance, high flexural strength, good fracture resistance, good creep resistance and relatively high hardness. These properties are obtained through the processing method involving liquid phase sintering in which a tailored microstructure, with high aspect ratio grains and chemistry of intergranular phase, triggers the toughening and strengthening mechanisms leading to the development of high fracture toughness and fracture strength. However, despite high fracture toughness and strength, Si3N4 ceramic materials still break catastrophically, and the fracture behaviour of this ceramic is considered to be the major obstacle for its wider use as a structural material. In addition to the macrostructure–mechanical properties relationship, this paper also reviews new designs involving laminates possessing no plane of weakness and some theoretical developments involving crack opening displacement. Proposals of how to improve the fracture resistance were also discussed.


Residual Stress Fracture Toughness Y2O3 Silicon Nitride Flaw Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Poper P (1994) Key Eng Mater 89–91:719Google Scholar
  2. 2.
    Berroth K, Prescher T, Schubert J (2005) 3rd DRACHE-seminar casting techniques, Lahnstein, Germany, May 9–11, 2003Google Scholar
  3. 3.
    Taffner U, Carle V, Schafer U, Predel F, Petzow G (1991) Prakt Met 28:592Google Scholar
  4. 4.
    Mazzocchi M, Bellosi A (2008) J Mater Sci Mater Med 19:2881CrossRefGoogle Scholar
  5. 5.
    Mazzocchi M, Gardini D, Traverso PL, Faga MG, Bellosi A (2008) J Mater Sci Mater Med 19:2889CrossRefGoogle Scholar
  6. 6.
    Neumann A, Reske T, Held M, Jahnke K, Ragoß C, Maier HR (2004) J Mater Sci Mater Med 15:1135CrossRefGoogle Scholar
  7. 7.
    Jack KH (1976) J Mater Sci 11:1135. doi: 10.1007/BF00553123 CrossRefGoogle Scholar
  8. 8.
    Weiss J (1981) Ann Rev Mater Sci 11:381CrossRefGoogle Scholar
  9. 9.
    Hampshire S (2007) J Achiev Mater Manuf Eng 24(1):43Google Scholar
  10. 10.
    Wild S, Grieveson P, Jack KH (1972) Spec Ceram 5(271–284):385Google Scholar
  11. 11.
    Grieveson P, Jack KH, Wild S (1968) Spec Ceram 4:237Google Scholar
  12. 12.
    Henderson CMB, Taylor D (1975) Trans J Br Ceram Soc 74:49Google Scholar
  13. 13.
    Tanaka H (1991) In: Somiya S, Inomata Y (eds) Silicon carbide ceramics-1, fundamental and solid reaction. Elsevier, New York, NY, p 213Google Scholar
  14. 14.
    Greskovich C, Rosolowski JH (1975) J Am Ceram Soc 59(7–8):336Google Scholar
  15. 15.
    Kingery WD (1959) J Appl Phys (a) 30(3):301CrossRefGoogle Scholar
  16. 16.
    Barsoum M (1977) Fundamentals of ceramics. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Coble RL (1958) J Am Ceram Soc 41:55CrossRefGoogle Scholar
  18. 18.
    Krstic Z, Krstic VD (2002) Diffusion coefficient of Si3N4 during solution-reprecipitation stage of liquid phase sintering, unpublished workGoogle Scholar
  19. 19.
    Thummler F (1980) Mater Sci Res 13:247Google Scholar
  20. 20.
    Hampshire S, Jack KH (1975) Spec Ceram 6:37Google Scholar
  21. 21.
    Suematsu H, Mitomo M, Mitchel TE, Petrovic JJ, Fukunaga O, Ohashi N (1997) J Am Ceram Soc 80(3):615CrossRefGoogle Scholar
  22. 22.
    Natansohn S, Sarin VK (1988) In: Hausner H, Messing G, Horano GL (eds) Ceramic powder processes science. Dtch. Keram. Ges., Cologne, p 433Google Scholar
  23. 23.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  24. 24.
    Wagner C (1961) Z Elektrochem 65:581Google Scholar
  25. 25.
    Tien TY (1995) In: Alper AM (ed) Study of silicon nitride ceramics, phase diagrams in advanced ceramics. Academic Press, San Diego, p 127Google Scholar
  26. 26.
    Lai KR, Tien TY (1991) Bimon. Rep. ceramic technology for advanced heat engine project. Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  27. 27.
    Krstic VD, Bellosi A, Bucciotti F, Krstic Z (2011) Microstructure and mechanical properties of pressureless sintered and HIP-ed silicon-nitride ceramics, unpublished workGoogle Scholar
  28. 28.
    Becher PF, Painter S, Shibatam N, Waters SB, Lin H-T (2008) J Am Ceram Soc 91(7):2328CrossRefGoogle Scholar
  29. 29.
    Painter JS, Averill FW, Becher PF, Shibata N, Van Benthem K, Pennycook SJ (2008) Phys Rev B 78:214201CrossRefGoogle Scholar
  30. 30.
    Shibata N, Pennycook SJ, Gosne TR, Painter GS, Shelton WA, Becher PF (2004) Nature 428:730CrossRefGoogle Scholar
  31. 31.
    Averill FW, Painter GS (2008) Phys Rev B 77:155109CrossRefGoogle Scholar
  32. 32.
    Shibata N, Painter GS, Becher PF, Pennycook SJ (2006) Appl Phys Lett 89:051908CrossRefGoogle Scholar
  33. 33.
    Deeley GG, Herbert JM, Moore NC (1961) Powder Metall 8:145CrossRefGoogle Scholar
  34. 34.
    Tsuge A, Nishida K, Komatsu M (1975) J Am Ceram Soc 58:323Google Scholar
  35. 35.
    Jack KH (1979) 4th CIMTEC, energy and ceramics, St. Vincent, ItalyGoogle Scholar
  36. 36.
    Gauckler LJ, Boskovic S, Petzow G, Tien TY (1977) In: Riley FL (ed) Nitrogen ceramics. Nordhoff, Leyden, p 405Google Scholar
  37. 37.
    Gauckler LJ, Petzow G (1977) In: Riley FL (ed) Nitrogen ceramics. NATO Advanced Study Institute Series. Nordhoff, Leyden, p 41Google Scholar
  38. 38.
    Oda I, Kaneno M, Yamamoto N (1977) In: Riley FL (ed) Nitrogen ceramics. Nordhoff, Leyden, p 359Google Scholar
  39. 39.
    Rice RW, McDonough WJ (1975) J Am Ceram Soc 58:264CrossRefGoogle Scholar
  40. 40.
    Wallace JS, Kelly JF (1994) Key Eng Mater 89–91:501Google Scholar
  41. 41.
    Park D-S, Lee S-Y, Kim H-D, Yoo B-J, Kim B-A (1998) J Am Ceram Soc 81(7):1876CrossRefGoogle Scholar
  42. 42.
    Nishimura T, Mitomo M (1996) J Mater Res 12:203CrossRefGoogle Scholar
  43. 43.
    Kargin YuA, Lysenkov AS, Ivicheva SN, Zakharov AI, Popova NA, Solntsev KA (2010) Inorg Mater 46(7):799CrossRefGoogle Scholar
  44. 44.
    Furuya K, Munakata F, Matsuo K, Akimune Y, Ye J, Okada A (2002) J Therm Anal Calorim 69:873CrossRefGoogle Scholar
  45. 45.
    Hoffmann MJ, Geyer A, Oberacker R (1999) J Eur Ceram Soc 19:2359CrossRefGoogle Scholar
  46. 46.
    Bressiani JC, Genova LA (2006) Adv Sci Technol 45:1717CrossRefGoogle Scholar
  47. 47.
    Prochaska S, Greskovich C (1978) Effects of some impurities of sintering Si3N4. General Electric Report, vol 204, p 78Google Scholar
  48. 48.
    Becher PF, Hwang S-L, Hsueh C-H (1995) Using microstructure to attack the brittle nature of silicon nitride ceramics. MRS Bulletin, February 23–27Google Scholar
  49. 49.
    Krstic VD (2000) In: Song J, Yin R (eds) Proceedings of international conference on engineering and technological science, vol 1. Chinese Academy of Engineering, Beijing, China, p 83Google Scholar
  50. 50.
    Drew P, Lewis MH (1974) J Mater Sci 9:261. doi: 10.1007/BF00550950 CrossRefGoogle Scholar
  51. 51.
    Lange FF (1979) J Am Ceram Soc 62(7–8):428CrossRefGoogle Scholar
  52. 52.
    Woetting G, Kanka B, Ziegler G (1986) In: Hampshire S (ed) Non-oxide technical and engineering ceramics. Elsevier, London, p 83Google Scholar
  53. 53.
    Tani E, Umebayashi K, Kishi K, Kobayashi K, Nishijama M (1985) J Mater Sci Lett 4:1454CrossRefGoogle Scholar
  54. 54.
    Pyzik AJ, Hart AM (1995) In: Alper AM (ed) Phase diagrams in advanced ceramics. Academic Press, San Diego, p 199Google Scholar
  55. 55.
    Mitomo M, Tsutsumi M, Tanaka H, Uenosono S, Saito F (1990) J Am Ceram Soc 73(8):2441CrossRefGoogle Scholar
  56. 56.
    Neil JT, Bandyopadhyay G, Sordelet D, Mahoney M (1989) Annu Meet Auton Technol Dev Contam CoordGoogle Scholar
  57. 57.
    Krstic Z, Krstic VD (2003) Mater Sci Forum 413:129CrossRefGoogle Scholar
  58. 58.
    Krstic Z, Yu Z, Krstic VD (2007) J Mater Sci 42:5431. doi: 10.1007/s10853-006-0826-9 CrossRefGoogle Scholar
  59. 59.
    Griffith AA (1921) Philos Trans R Soc Lond A 221:163CrossRefGoogle Scholar
  60. 60.
    Griffith AA (1924) Proceedings of the 1st international congress applied mechanics, p 55Google Scholar
  61. 61.
    Faber KT, Evans AG (1983) Acta Metall 31(4):577CrossRefGoogle Scholar
  62. 62.
    Mulla MA, Krstic VD (1994) Acta Metal Mater 42(1):303CrossRefGoogle Scholar
  63. 63.
    Becher PF, Shibata N, Painter GS, Averill F, Van Benthem K, Lin H-T, Waters SB (2010) J Am Ceram Soc 93(2):570CrossRefGoogle Scholar
  64. 64.
    Fett T, Oberacker R, Hoffman M, Schneider GA, Becher P, Kruzic JJ (2011) J Am Ceram Soc 84(6):1884Google Scholar
  65. 65.
    Krstic VD (1985) Acta Metall 33(3):521CrossRefGoogle Scholar
  66. 66.
    Knudsen FP (1962) J Am Ceram Soc 45:94CrossRefGoogle Scholar
  67. 67.
    Rice RW (1984) J Mater Sci 19:895. doi: 10.1007/BF00540460 CrossRefGoogle Scholar
  68. 68.
    Krstic VD (1985) Acta Metall 33:521CrossRefGoogle Scholar
  69. 69.
    Krstic V, Erb U, Palumbo G (1993) Scripta Metall Mater 29:1501CrossRefGoogle Scholar
  70. 70.
    Krstic VD (1988) J Mater Sci 23:259. doi: 10.1007/BF01174063 CrossRefGoogle Scholar
  71. 71.
    Krstic VD (1983) J Am Ceram Soc 66(10):726CrossRefGoogle Scholar
  72. 72.
    Krstic VD, Vlajic MD (1983) Acta Metall 31:139CrossRefGoogle Scholar
  73. 73.
    Krstic VD (1984) J Am Ceram Soc 67(9):589CrossRefGoogle Scholar
  74. 74.
    Krstic VD, Komac M, Vlajic MD (1984) J Mater Sci 19:4119. doi: 10.1007/BF00980779 CrossRefGoogle Scholar
  75. 75.
    Wang G, Krstic VD (1998) Philos Mag A 78(5):1125CrossRefGoogle Scholar
  76. 76.
    Krstic VD (2006) Theor Appl Fract Mech 45:212CrossRefGoogle Scholar
  77. 77.
    Krstic VD, Erickson WH (1987) J Mater Sci 22:2881. doi: 10.1007/BF01086485 CrossRefGoogle Scholar
  78. 78.
    Nieman GW, Weertman JR, Siegel RW (1991) J Mater Res 6:1012CrossRefGoogle Scholar
  79. 79.
    Zugic R, Szpunar B, Krstic VD, Erb U (1997) Philos Mag 75(4):1041CrossRefGoogle Scholar
  80. 80.
    Krstic Z, Krstic VD (2002) Effect of porosity on fracture strength of Si3N4 sintered with Y2O3 and Al2O3, unpublished workGoogle Scholar
  81. 81.
    Selsing J (1961) J Am Ceram Soc 44:419CrossRefGoogle Scholar
  82. 82.
    Krel A, Blank P (1996) J Eur Ceram Soc 16:1189CrossRefGoogle Scholar
  83. 83.
    Hasselman DPH (1969) J Am Ceram Soc 52:600CrossRefGoogle Scholar
  84. 84.
    Clegg WJ, Kendall K, Alford NM, Birchall D, Button TW (1990) Nature 347:455CrossRefGoogle Scholar
  85. 85.
    Kovar D, King BH, Trice RW, Halloran JW (1997) J Am Ceram Soc 80:2471CrossRefGoogle Scholar
  86. 86.
    Koh Y-H, Kim H-W, Kim H-E (2002) J Am Ceram Soc 85:2840CrossRefGoogle Scholar
  87. 87.
    She J, Inoe T, Ueno K (2000) J Eur Ceram Soc 20:1771CrossRefGoogle Scholar
  88. 88.
    Atkins AG (1974) Nature 252:116CrossRefGoogle Scholar
  89. 89.
    Zhang L, Krstic VD (1995) Theor Appl Fract Mech 24:13CrossRefGoogle Scholar
  90. 90.
    Tu W-C, Lange FF, Evans AG (1996) J Am Ceram Soc 79:424Google Scholar
  91. 91.
    Blanks KS, Kristofferson A, Carlstorm E, Clegg WJ (1998) J Eur Ceram Soc 18:1945CrossRefGoogle Scholar
  92. 92.
    Davis JB, Kristofferson A, Carlstorm E, Clegg WJ (2000) J Am Ceram Soc 83:2369CrossRefGoogle Scholar
  93. 93.
    Ohji T, Shigegaki Y, Miyajima T, Kanzaki S (1997) J Am Ceram Soc 80:991CrossRefGoogle Scholar
  94. 94.
    Sanchez-Herencia AJ, Pascual C, He J, Lange FF (1999) J Am Ceram Soc 82:1512CrossRefGoogle Scholar
  95. 95.
    Mawdsley J, Kover D, Halloran JW (2000) J Am Ceram Soc 83:802CrossRefGoogle Scholar
  96. 96.
    Liu H, Hsu SM (1996) J Am Ceram Soc 79:2452CrossRefGoogle Scholar
  97. 97.
    Orlovskaya N, Kuebler J, Subbotin V, Lugovy M (2005) J Mater Sci 40:5443. doi: 10.1007/s10853-005-1918-7 CrossRefGoogle Scholar
  98. 98.
    Shigegaki Y, Brito ME, Hirao K, Toriyama M, Kanzaki S (1997) J Am Ceram Soc 80:2624Google Scholar
  99. 99.
    Plucknett KP, Caceres CH, Hughers C, Wilkinson DS (1994) J Am Ceram Soc 77:2145CrossRefGoogle Scholar
  100. 100.
    Russo CJ, Harmer MP, Chan MH, Miller GA (1992) J Am Ceram Soc 75:3396CrossRefGoogle Scholar
  101. 101.
    Wang C, Huang Y, Zan Q, Zou L, Cai S (2002) J Am Ceram Soc 85:2457CrossRefGoogle Scholar
  102. 102.
    Kovar D, Thouless MD, Halloran JW (1998) J Am Ceram Soc 81:1004CrossRefGoogle Scholar
  103. 103.
    Yu Z, Krstic Z, Krstic VD (2005) Key Eng Mater 280–283:1873CrossRefGoogle Scholar
  104. 104.
    Krstic Z, Krstic VD (2009) J Eur Ceram Soc 29:1825CrossRefGoogle Scholar
  105. 105.
    Krstic Z, Krstic VD (2008) J Eur Ceram Soc 28:1723CrossRefGoogle Scholar
  106. 106.
    Krstic Z, Krstic VD (2011) J Eur Ceram Soc 31:1841CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Advanced Ceramics-Mechanical and Materials DepartmentQueen’s UniversityKingstonCanada

Personalised recommendations