Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7931–7935 | Cite as

A voltage-dependent investigation on detachment process for free-standing crystalline TiO2 nanotube membranes

  • Guohua Liu
  • Nils Hoivik
  • Kaiying Wang
  • Henrik Jakobsen
Letter

Introduction

TiO2 nanotube (TNT) arrays have attracted considerable scientific interests because of their photoelectric properties and technological importance for diverse applications as solar cells [1, 2, 3, 4], photocatalysis [5, 6, 7], gas sensors [8], hydrogen generation from water splitting [6], and composite nano-membranes [9, 10]. Among various synthesis methods, electrochemical anodization is an excellent approach to fabricate TNT arrays due to its simplicity, low cost, and tunable morphology [11]. However, the nature of as-prepared TNT membrane adhered on opaque Ti foil restricts their feasibility for the applications such as tube filling [9, 10], biofiltration, flow-through photocatalytic reactions [5], and front illumination in solar cells [2, 3, 4]. After detachment from the substrate, free-standing TNT membranes show high performance due to the absence of a blocking layer [2, 4]. The TNT membrane can be directly used or attached on foreign substrates for the above...

Keywords

Anatase TiO2 Ammonium Fluoride Detachment Process View Scanning Electron Microscope Detachment Mechanism 

Notes

Acknowledgments

The authors are grateful to Zekija Ramic and Ragnar D. Johansen for help of the experimental set up, Tormod Vinsand and Knut Aasmundtveit for help with SEM, Vishnukanthan Venkatachalapathy in MiNalab of Oslo University for help with XRD chractarization. The author GHL also acknowledge financial support from KD program at the Vestfold University College, Oslofjord Fund and NorFab in Norway.

References

  1. 1.
    Li LL, Chen YJ, Wu HP, Wang NS, Diau EW (2011) Energy Environ. Sci. doi: https://doi.org/10.1039/c0ee00474j CrossRefGoogle Scholar
  2. 2.
    Banerjee S, Misra M, Mohapatra SK, Howard C, Mohapatra SK, Kamilla SK (2010) Nanotechnology 21:145201CrossRefGoogle Scholar
  3. 3.
    Chen QW, Xu DS (2009) J Phys Chem C 113:6310CrossRefGoogle Scholar
  4. 4.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215CrossRefGoogle Scholar
  5. 5.
    Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Nano Lett 7:1286CrossRefGoogle Scholar
  6. 6.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 5:190CrossRefGoogle Scholar
  7. 7.
    Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) Nano Lett 9:731CrossRefGoogle Scholar
  8. 8.
    Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Nanotechnology 17:398CrossRefGoogle Scholar
  9. 9.
    Fang D, Huang KL, Liu SQ, Luo ZP, Qing XX, Zhang QG (2010) J Alloys Compd 498:37CrossRefGoogle Scholar
  10. 10.
    Mohapatra SK, Banerjee S, Misra M (2008) Nanotechnology 19:315601CrossRefGoogle Scholar
  11. 11.
    Shin Y, Lee S (2009) Nanotechnology 20:105301CrossRefGoogle Scholar
  12. 12.
    Wang J, Lin ZQ (2008) Chem Mater 20:1257CrossRefGoogle Scholar
  13. 13.
    Ali G, Yoo SH, Kum JM, Kim YN, Cho SO (2011) Nanotechnology 22:245602CrossRefGoogle Scholar
  14. 14.
    Lin CJ, Yu YH, Liou YH (2009) Appl Catal B 93:119CrossRefGoogle Scholar
  15. 15.
    Park JH, Lee TW, Kang MG (2008) Chem Commun 2008:2867. doi: https://doi.org/10.1039/B800660A CrossRefGoogle Scholar
  16. 16.
    Wang DA, Yu B, Wang CW, Zhou F, Liu WM (2009) Adv Mater 21:1964CrossRefGoogle Scholar
  17. 17.
    Albu SP, Ghicov A, Berger S, Jha H, Schmuki P (2010) Electrochem Commun 12:1352CrossRefGoogle Scholar
  18. 18.
    Wang DA, Liu LF (2010) Chem Mater 22:6656CrossRefGoogle Scholar
  19. 19.
    Kant K, Losic D (2009) Phys Status Solidi RRL 3:139CrossRefGoogle Scholar
  20. 20.
    Li SQ, Zhang GM (2010) J Ceram Soc Jpn 118:291CrossRefGoogle Scholar
  21. 21.
    Jo Y, Jung I, Lee I, Choi J, Tak Y (2010) Electrochem Commun. 12:616CrossRefGoogle Scholar
  22. 22.
    Yuan XL, Zheng MJ, Ma L, Shen WZ (2010) Nanotechnology 21:405302CrossRefGoogle Scholar
  23. 23.
    Lin J, Chen JF, Chen XF (2010) Electrochem Commun 12:1062CrossRefGoogle Scholar
  24. 24.
    Macak JM, Albu S, Kim DH, Paramasivam I, Aldabergerova S, Schmuki P (2007) Electrochem Solid-State Lett 10:K28CrossRefGoogle Scholar
  25. 25.
    Yasuda K, Schmuki P (2007) Electrochem Commun 9:615CrossRefGoogle Scholar
  26. 26.
    Singh S, Festin M, Barden WRT, Xi L, Francis JT, Kruse P (2008) ACS Nano 2:2363CrossRefGoogle Scholar
  27. 27.
    Langford JI, Wilson AJC (1978) J Appl Cryst 11:102CrossRefGoogle Scholar
  28. 28.
    Sreekantan S, Hazan R, Lockman Z (2009) Thin Solid Films 518:16CrossRefGoogle Scholar
  29. 29.
    Cheng Q, Ahmad W, Liu GH, Wang KY (2011) In: Proc. of 11th IEEE international conference on nanotechnology, Portland Marriott, August 15–18, 2011, Portland, OR, p 1589Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Guohua Liu
    • 1
  • Nils Hoivik
    • 1
  • Kaiying Wang
    • 1
  • Henrik Jakobsen
    • 1
  1. 1.Department of Micro and Nano Systems TechnologyVestfold University CollegeHortenNorway

Personalised recommendations