Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7923–7930 | Cite as

Effects of supercooling and organic solvent on the formation of a silk sponge with porous 3-D structure, and its dynamical and structural characterization using solid-state NMR

  • Tsunenori Kameda
  • Tomoko Hashimoto
  • Yasushi Tamada
Letter

Introduction

A widely accepted feature of the silk generated by silkworms is its impressive mechanical properties. Aside from its direct use as silk fibers, silk protein can also be dissolved and converted into hydrogels [1], films [2], fibers [3], beads [4], electrospun nonwoven fibroin [5], and sponges, leading to great versatility in use. Silk sponge is the generic name for the porous 3-D structure made of silk fibroin. Many methods have been explored for the formation of a silk sponge. Freeze-drying of fibroin hydrogels [1] or fibroin solution in the presence of an appropriate cross-linker [6] yields silk sponges. Salt leaching and gas foaming are also used to form silk sponges [7, 8]. Silk sponges can also formed by repeated freezing and thawing [9].

One of the authors developed an original method to prepare silk sponges, which is shown in Fig.  1 [ 10]. The process involved freezing and thawing an aqueous solution of fibroin in the presence of a small amount of an organic solvent....

Keywords

Nuclear Magnetic Resonance Sponge Silk Fibroin Random Coil Random Coil Structure 

Notes

Acknowledgements

This study was supported in part by the Agri-Health Translational Research Project and Research and development project for application in promoting a new policy for Agriculture Forestry and Fisheries.

References

  1. 1.
    Kim UJ, Park JY, Li CM, Jin HJ, Valluzzi R, Kaplan DL (2004) Biomacromolecules 5(3):786CrossRefGoogle Scholar
  2. 2.
    Lawrence BD, Omenetto F, Chui K, Kaplan DL (2008) J Mater Sci 43(21):6967. doi: https://doi.org/10.1007/s10853-008-2961-y CrossRefGoogle Scholar
  3. 3.
    Yao JM, Masuda H, Zhao CH, Asakura T (2002) Macromolecules 35(1):6CrossRefGoogle Scholar
  4. 4.
    Hino T, Tanimoto M, Shimabayashi S (2003) J Colloid Interface Sci 266(1):68CrossRefGoogle Scholar
  5. 5.
    Shao HL, Zhu JX, Hu XC (2007) Int J Biol Macromol 41(4):469CrossRefGoogle Scholar
  6. 6.
    Li MZ, Ogiso M, Minoura N (2003) Biomaterials 24(2):357CrossRefGoogle Scholar
  7. 7.
    Nazarov R, Jin HJ, Kaplan DL (2004) Biomacromolecules 5(3):718CrossRefGoogle Scholar
  8. 8.
    Marcotte I, Byette F, Bouchard F, Pellerin C, Paquin J, Mateescu MA (2011) Polym Bull 67(1):159CrossRefGoogle Scholar
  9. 9.
    Li MZ, Zhang CS, Lu SZ, Wu ZY, Yan HJ (2002) Polym Adv Technol 13(8):605CrossRefGoogle Scholar
  10. 10.
    Tamada Y (2005) Biomacromolecules 6(6):3100CrossRefGoogle Scholar
  11. 11.
    Aoki H, Tomita N, Morita Y, Hattori K, Harada Y, Sonobe M, Wakitani S, Tamada Y (2003) Biomed Mater Eng 13(4):309Google Scholar
  12. 12.
    Tomita N, Kambe Y, Takeda Y, Yamamoto K, Kojima K, Tamada Y (2010) Biomed Mater Eng 20(6):309Google Scholar
  13. 13.
    Kawakami M, Tomita N, Shimada Y, Yamamoto K, Tamada Y, Kachi N, Suguro T (2011) Biomed Mater Eng 21:53Google Scholar
  14. 14.
    Saito H, Tuzi S, Naito A (1998) Polysaccharides and biological system. Elsevier, TokyoCrossRefGoogle Scholar
  15. 15.
    Kameda T, Asakura T (2002) Dynamics of silk fibroin studied with NMR spectroscopy. Academic Press, LondonCrossRefGoogle Scholar
  16. 16.
    Nakazawa Y, Nakai T, Kameda T, Asakura T (1999) Chem Phys Lett 311(5):362CrossRefGoogle Scholar
  17. 17.
    Asakura T, Demura M, Date T, Miyashita N, Ogawa K, Williamson MP (1997) Biopolymers 41(2):193CrossRefGoogle Scholar
  18. 18.
    van Beek JD, Kummerlen J, Vollrath F, Meier BH (1999) Int J Biol Macromol 24(2–3):173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tsunenori Kameda
    • 1
  • Tomoko Hashimoto
    • 1
  • Yasushi Tamada
    • 1
  1. 1.National Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations