Journal of Materials Science

, Volume 47, Issue 1, pp 41–54

The structure and mechanics of bone

Anniversary Review


The four levels of hierarchy considered in this review are the nanoscale (the mineralised collagen fibre and the extrafibrillar mineral), the microscale (the structure as visible under the microscope), the mesoscale (particularly the relationship between cancellous and cortical bone) and the whole bone scale. The explosion of papers at the nanoscale precludes any settling on one best model. At the microscale the inadequacies of linear elastic fracture mechanics, the importance of R-curves for understanding what is happening to cracks in bone, and the effect of different histological types are emphasised. At the mesoscale the question of whether cancellous bone is anything but compact bone with a lot of holes in it, and the question of whether cancellous bone obeys Wolff’s ‘law’ is discussed. The problem of not damaging bone when examining it with X-rays is mentioned (though not solved). At the whole bone level the relative roles of genetics and the external forces and the question of the way in which bones are loaded, in bending or compression, is raised, and the question of size effects, long underestimated or ignored by the bone community, is discussed. Finally, the question of why there are hierarchies at all in bone is addressed


  1. 1.
    Currey JD (2010) J Mech Behav Biomed Mater 3:357CrossRefGoogle Scholar
  2. 2.
    Weiner S, Wagner HD (1998) Annu Rev Mater Sci 28:271CrossRefGoogle Scholar
  3. 3.
    Currey JD (2006) Bones: structure and mechanics. Princeton University Press, PrincetonGoogle Scholar
  4. 4.
    Taylor ME, Tanner KE, Freeman MAR, Yettram AL (1996) Med Eng Phys 18:122CrossRefGoogle Scholar
  5. 5.
    Sverdlova NS, Witzel U (2010) J Biomech 43:387CrossRefGoogle Scholar
  6. 6.
    Edwards WB, Gillette JC, Thomas JM, Derrick TR (2008) Clin Biomech 23:1269CrossRefGoogle Scholar
  7. 7.
    Yang PF, Brüggemann G-P, Rittweger J (2011) J Musculoskelet Neuronal Interact 11:8Google Scholar
  8. 8.
    George WT, Vashishth D (2005) J Orthop Res 23:1047CrossRefGoogle Scholar
  9. 9.
    Nikolov S, Raabe D (2008) Biophys J 94:4220CrossRefGoogle Scholar
  10. 10.
    Bonar LC, Lees S, Mook HA (1985) J Mol Biol 181:265CrossRefGoogle Scholar
  11. 11.
    Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) J Mater Sci Mater Med 13:333CrossRefGoogle Scholar
  12. 12.
    Buehler MJ (2007) Nanotechnology. doi:10.1088/0957-4484/18/29/295102
  13. 13.
    Buehler MJ (2007) J Mater Sci 42:8765. doi:10.1007/s10853-007-1952-8 CrossRefGoogle Scholar
  14. 14.
    Fritsch A, Hellmich C (2007) J Theor Biol 244:597CrossRefGoogle Scholar
  15. 15.
    Fritsch A, Hellmich C, Dormieux L (2009) J Theor Biol 260:230CrossRefGoogle Scholar
  16. 16.
    Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2011) Nano Lett. doi:10.1021/nl10394u
  17. 17.
    Gupta HS, Seto J, Wagermaier ZaslanskyP, Boesecke P, Fratzl P (2006) Proc Natl Acad Sci USA 103:17741CrossRefGoogle Scholar
  18. 18.
    Luo Q, Nakade R, Dong X, Rong Q, Wang X (2011) J Mech Behav Biomed Mater. doi:10.1016/j.jmbbm.2011.02.003
  19. 19.
    Taylor D (2007) J Mater Sci 42:8911. doi:10.1007/s10853-007-1698-3 CrossRefGoogle Scholar
  20. 20.
    Zhang Z, Zhang Y-W, Gao H (2011) Proc R Soc B 278:519CrossRefGoogle Scholar
  21. 21.
    Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, Marshall GW, Marshall SJ, Ritchie RO, Derynck R, Alliston T (2005) Proc Natl Acad Sci USA 102:18813CrossRefGoogle Scholar
  22. 22.
    Chang JL, Brauer DS, Johnson J, Chen CG, Akil O, Balooch G, Humphrey MB, Chin EN, Porter AE, Butcher K, Ritchie RO, Schneider RA, Lalwani A, Derynck R, Marshall GW, Marshall SJ, Lustig L, Alliston T (2010) EMBO Rep 11:765CrossRefGoogle Scholar
  23. 23.
    Viswanath B, Ravishankar N (2008) Biomaterials 29:4855CrossRefGoogle Scholar
  24. 24.
    Hu Y–Y, Rawal A, Schmidt-Rohr K (2010) Proc Natl Acad Sci USA 107:22425CrossRefGoogle Scholar
  25. 25.
    Gao H, Baohua J, Jäger IL, Arzt E, Fratzl P (2003) Proc Natl Acad Sci USA 100:5597CrossRefGoogle Scholar
  26. 26.
    Mielke SL, Troya D, Zhang S, Li J-L, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) Chem Phys Lett 390:413CrossRefGoogle Scholar
  27. 27.
    Ballarini R, Kayacan R, Ulm F-J, Belytschko T, Heuer A (2005) Int J Fract 135:187CrossRefGoogle Scholar
  28. 28.
    Currey J (2004) J Theor Biol 231:569CrossRefGoogle Scholar
  29. 29.
    Rogers KD, Zioupos P (1999) J Mater Sci Lett 18:651CrossRefGoogle Scholar
  30. 30.
    Bonfield W, Clark EA (1973) J Mater Sci 8:1590. doi:10.1007/BF00754894 CrossRefGoogle Scholar
  31. 31.
    Locke M (2004) J Morph 262:546CrossRefGoogle Scholar
  32. 32.
    Zylberberg L (2004) C R Palevol 3:591CrossRefGoogle Scholar
  33. 33.
    Yang QD, Cox BN, Nalla RK, Ritchie RO (2006) Bone 38:878CrossRefGoogle Scholar
  34. 34.
    Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2005) Biomaterials 26:217CrossRefGoogle Scholar
  35. 35.
    Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2004) Bone 35:1240CrossRefGoogle Scholar
  36. 36.
    Akkus O, Rimnac CM (2001) J Biomech 34:757CrossRefGoogle Scholar
  37. 37.
    Taylor D, Hazenberg JG, Lee CT (2007) Nat Mater 6:263CrossRefGoogle Scholar
  38. 38.
    Liu D, Wagner HD, Weiner S (2000) J Mater Sci Mater Med 11:49CrossRefGoogle Scholar
  39. 39.
    Turner CH, Rho J, Takano Y, Tsui TY, Pharr GM (1999) J Biomech 32:437CrossRefGoogle Scholar
  40. 40.
    Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone 42:456CrossRefGoogle Scholar
  41. 41.
    Hodgskinson R, Currey JD (1992) J Mater Sci Mater Med 3:377CrossRefGoogle Scholar
  42. 42.
    Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Annu Rev Biomed Eng 3:307CrossRefGoogle Scholar
  43. 43.
    van Rietbergen B, Huiskes R (2001) In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, FL, p 15.1Google Scholar
  44. 44.
    Cowin SC (2001) In: Cowin SC (ed) Bone mechanics handbook. CRC Press, Boca Raton, FL, p 30.1Google Scholar
  45. 45.
    Cowin SC (ed) (2001) Bone mechanics handbook. CRC Press, Boca Raton, FLGoogle Scholar
  46. 46.
    Skedros JG, Baucom SL (2007) J Theor Biol 244:15CrossRefGoogle Scholar
  47. 47.
    Barth HD, Launey ME, MacDowell AA, Ager JW III, Ritchie RO (2010) Bone 46:1475CrossRefGoogle Scholar
  48. 48.
    Alexander RM (1981) Sci Prog 67:109Google Scholar
  49. 49.
    Lanyon LE, Smith RN (1970) Acta Orthop Scand 41:238CrossRefGoogle Scholar
  50. 50.
    Lanyon LE, Bourn S (1979) J Bone Jt Surg 61-A:263Google Scholar
  51. 51.
    Alexander RM, Kosoff B (1994) Bones: the unity of form and function. Weidenfeld and Nicholson, LondonGoogle Scholar
  52. 52.
    de Panafieu J-B, Gries P (2007) Evolution [in action]. Thames and Hudson, LondonGoogle Scholar
  53. 53.
    Murray PDF (1936) Bones, a study of the development and structure of the vertebrate skeleton. Cambridge University Press, CambridgeGoogle Scholar
  54. 54.
    Hall BK (1970) Biol Rev 45:455CrossRefGoogle Scholar
  55. 55.
    Currey JD, Landete-Castillejos T, Estevez J, Ceacero F, Olguin A, Garcia A, Gallego L (2009) J Exp Biol 212:3985CrossRefGoogle Scholar
  56. 56.
    Chapman N (1991) Deer. Whittet Books, LondonGoogle Scholar
  57. 57.
    Taylor D (2000) J Theor Biol 206:299CrossRefGoogle Scholar
  58. 58.
    Bigley RF, Gibeling JC, Stover SM, Hazelwood SJ, Fyrhie DP, Martin RB (2007) J Biomech 40:3548CrossRefGoogle Scholar
  59. 59.
    Le J-L, Bažant ZP, Bazant MZ (2011) J Mech Phys Solids 59:1291CrossRefGoogle Scholar
  60. 60.
    Le J-L, Bažant ZP (2011) J Mech Phys Solids 59:1311Google Scholar
  61. 61.
    Cotterell B (2010) Fracture and life. Imperial College Press, LondonCrossRefGoogle Scholar
  62. 62.
    Morel S, Dourado N (2011) Int J Solid Struct 48:1403Google Scholar
  63. 63.
    Carpinteri A, Pugno N (2005) Nat Mater 4:421CrossRefGoogle Scholar
  64. 64.
    Sen D, Buehler MJ (2011) Sci Rep. doi:10.1038/srep00035
  65. 65.
    De Leeuw NH (2002) Phys Chem Chem Phys 4:3865CrossRefGoogle Scholar
  66. 66.
    Schepers T, Brickmann J, Hochrein O, Zahn D (2007) Z Anorg Allg Chem 633:411CrossRefGoogle Scholar
  67. 67.
    Reilly DT, Burstein AH (1975) J Biomech 8:393CrossRefGoogle Scholar
  68. 68.
    Cezayirlioglu H, Bahniuk E, Davy DT, Heiple KG (1985) J Biomech 18:61CrossRefGoogle Scholar
  69. 69.
    Bourgery JM (1832) Traité complet de l’anatomie de l’homme I Osteologie. Delaunay, ParisGoogle Scholar
  70. 70.
    von Meyer GH (1867) Arch Anat Physiol Wiss Med 34:615Google Scholar
  71. 71.
    Roesler H (1987) J Biomech 20:1025CrossRefGoogle Scholar
  72. 72.
    Wolff J (1870) Virchows Arch path Anat Physiol 50:343Google Scholar
  73. 73.
    Roux W (1881) Der Kampfe der Teile im Organismus. Engelmann, LeipzigGoogle Scholar
  74. 74.
    Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirchswald, BerlinGoogle Scholar
  75. 75.
    Triepel H (1922) Die Architekturen der menslichen Knochenspongiosa. Bergmann, MunichGoogle Scholar
  76. 76.
    D’Arcy-Thompson W (1942) On growth and form. Cambridge University Press, Cambridge, p 976Google Scholar
  77. 77.
    Wolff J (1986) The law of bone remodelling. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations