Advertisement

Journal of Materials Science

, 46:7912 | Cite as

Fabrication of fluorescent nanodiamond@C core–shell hybrids via mild carbonization of sodium cholate–nanodiamond complexes

  • A. B. Bourlinos
  • R. Zbořil
  • M. Kubala
  • P. Stathi
  • Y. Deligiannakis
  • M. A. Karakassides
  • T. A. Steriotis
  • A. K. Stubos
Letter

Nanodiamonds (NDs) represent an elegant carbon allotrope that bears some of the glint of the precious gemstone at the nanoscale level (<10 nm) [1, 2, 3]. Besides esthetics, NDs additionally display a set of unique structural, physical, and chemical properties that have drawn the attention of materials' scientists and engineers [4, 5, 6, 7, 8, 9, 10, 11]. Though covered in a veil of secrecy for decades, the large-scale commercialization of synthetic nanopowders at reasonable prices has now made this material widely available for research and development, triggering a rapid expansion of the field. High-grade ND powders available in the market today are prepared using the detonation method, i.e., detonation NDs [12]. The prime nanoparticles in these powders are spherical, crystalline, and monodisperse with an average size of ca. 4–5 nm. Moreover, they appear sintered to each other forming coarse, yet tight agglutinates [13, 14]. The agglutinates are few nanoparticles thick and several...

Keywords

Organic Salt Sodium Cholate Interfacial Carbon Shell Hybrid Sodic Carboxylate Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was co-funded by the European Union in the framework of the program “Pythagoras I” of the “Operational Program for Education and Initial Vocational Training” of the 3rd Community Support Framework of the Hellenic Ministry of Education, funded by 25% from national sources and by 75% from the European Social Fund (ESF), as well as, by the projects of the ministry of education of the Czech Republic (1M6198959201 and MSM6198959218). This study has been also supported by the Operational Program Research and Development for Innovations-European Social Fund (CZ.1.05/2.1.00/03.0058). A. B. Bourlinos and A. K. Stubos acknowledge the funding by the EC FP7 under Grant Agreement No. 229773 (PERL).

References

  1. 1.
    Krueger A (2008) Adv Mater 20:2445CrossRefGoogle Scholar
  2. 2.
    Krueger A (2008) Chem Eur J 14:1382CrossRefGoogle Scholar
  3. 3.
    Schwertfeger H, Fokin AA, Schreiner PR (2008) Angew Chem Int Ed 47:1022CrossRefGoogle Scholar
  4. 4.
    Kulakova II (2004) Phys Solid State 46:636CrossRefGoogle Scholar
  5. 5.
    Liu Y, Gu Z, Margrave JL, Khabashesku VN (2004) Chem Mater 16:3924CrossRefGoogle Scholar
  6. 6.
    Ozawa M, Inaguma M, Takahashi M, Kataoka F, Krueger A, Osawa E (2007) Adv Mater 19:1201CrossRefGoogle Scholar
  7. 7.
    Krueger A (2008) J Mater Chem 18:1485CrossRefGoogle Scholar
  8. 8.
    Maitra U, Gomathi A, Rao CNR (2008) J Exp Nanosci 3:271CrossRefGoogle Scholar
  9. 9.
    Burleson T, Yusuf N, Stanishevsky A (2009) J Achiev Mater Manuf Eng 37:258Google Scholar
  10. 10.
    Mochalin VN, Gogotsi Y (2009) J Am Chem Soc 131:4594CrossRefGoogle Scholar
  11. 11.
    Schrand AM, Hens SAC, Shenderova OA (2009) Crit Rev Solid State Mater Sci 34:18CrossRefGoogle Scholar
  12. 12.
    Dolmatov VY (2007) Russ Chem Rev 76:339CrossRefGoogle Scholar
  13. 13.
    Osawa E (2007) Diam Relat Mater 16:2018CrossRefGoogle Scholar
  14. 14.
    Osawa E (2008) Pure Appl Chem 80:1365CrossRefGoogle Scholar
  15. 15.
    Khabashesku VN, Margrave JL, Barrera EV (2005) Diam Relat Mater 14:859CrossRefGoogle Scholar
  16. 16.
    Maitra U, Prasad KE, Ramamurty U, Rao CNR (2009) Solid State Commun 149:1693CrossRefGoogle Scholar
  17. 17.
    Shimkunas RA, Robinson E, Lam R, Lu S, Xu X, Zhang X-Q, Huang H, Osawa E, Ho D (2009) Biomaterials 30:5720CrossRefGoogle Scholar
  18. 18.
    Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I-N, Chu M, Stamboulis A (2009) ACS Nano 3:1032CrossRefGoogle Scholar
  19. 19.
    Kharisov BI, Kharissova OV, Chávez-Guerrero L (2010) Synth React Inorg Met-Org Nano-Met Chem 40:84Google Scholar
  20. 20.
    Spitsyn BV, Denisov SA, Skorik NA, Chopurova AG, Parkaeva SA, Belyakova LD, Larionov OG (2010) Diam Relat Mater 19:123CrossRefGoogle Scholar
  21. 21.
    Shames AI, Panich AM, Osipov VY, Aleksenskiy AE, Vul’ AY, Enoki T, Takai K (2010) J Appl Phys 107:014318CrossRefGoogle Scholar
  22. 22.
    Panich AM, Altman A, Shames AI, Osipov VY, Aleksenskiy AE, Vul’ AY (2011) J Phys D 44:125303CrossRefGoogle Scholar
  23. 23.
    Arnault J-C, Petit T, Girard H, Chavanne A, Gesset C, Sennour M, Chaigneau M (2011) Phys Chem Chem Phys 13:11481CrossRefGoogle Scholar
  24. 24.
    Raty J-Y, Galli G, Bostedt C, Van Buuren TW, Terminello LJ (2003) Phys Rev Lett 90:037401CrossRefGoogle Scholar
  25. 25.
    Green AA, Hersam MC (2009) Nano Lett 9:4031CrossRefGoogle Scholar
  26. 26.
    Shames AI, Panich AM, Kempinski W, Alexenskii AE, Baidakova MV, Dideikin AT, Osipov VY, Siklitski VI, Osawa E, Ozawa M, Vul’ AY (2002) J Phys Chem Solids 63:1993CrossRefGoogle Scholar
  27. 27.
    Dubois M, Guerin K, Petit E, Batisse N, Hamwi A, Komatsu N, Giraudet J, Pirotte P, Masin F (2009) J Phys Chem C 113:10371CrossRefGoogle Scholar
  28. 28.
    Fang X, Mao J, Levin EM, Schmidt-Rohr K (2009) J Am Chem Soc 131:1426CrossRefGoogle Scholar
  29. 29.
    Baker SN, Baker GA (2010) Angew Chem Int Ed 49:6726CrossRefGoogle Scholar
  30. 30.
    Smith BR, Gruber D, Plakhotnik T (2010) Diam Relat Mater 19:314CrossRefGoogle Scholar
  31. 31.
    Levine DG, Schlosberg RH, Silbernagel BG (1982) Proc Natl Acad Sci USA 79:3365CrossRefGoogle Scholar
  32. 32.
    Mkandawire M, Pohl A, Gubarevich T, Lapina V, Appelhans D, Rödel G, Pompe W, Schreiber J, Opitz J (2009) J Biophotonics 2:596CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. B. Bourlinos
    • 1
  • R. Zbořil
    • 2
  • M. Kubala
    • 3
  • P. Stathi
    • 4
  • Y. Deligiannakis
    • 4
  • M. A. Karakassides
    • 5
  • T. A. Steriotis
    • 6
  • A. K. Stubos
    • 7
  1. 1.Institute of Materials ScienceNCSR “Demokritos”AthensGreece
  2. 2.Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  3. 3.Department of Experimental PhysicsPalacky UniversityOlomoucCzech Republic
  4. 4.Laboratory of Physical Chemistry, Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece
  5. 5.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  6. 6.Institute of Physical ChemistryNCSR “Demokritos”AthensGreece
  7. 7.Environmental Research Laboratory, Institute of Nuclear Technology and Radiation ProtectionNCSR “Demokritos”AthensGreece

Personalised recommendations