Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7905–7911 | Cite as

In situ synthesis of high-density contact-free Ag-nanoparticles for plasmon resonance polystyrene nanocomposites

  • Daniele Pullini
  • Gianfranco Carotenuto
  • Mariano Palomba
  • Alessandra Mosca
  • Andy Horsewell
  • Luigi Nicolais
Letter

In the last decades, polymer matrix nanocomposites (PMN) have been studied extensively to exploit the properties of nanofillers for transforming the nature of practical household materials, in particular for mechanical properties [1]. Despite the early successes [2], the massive interest in nanocomposites started in 1990s, when Toyota proved that adding mica to nylon produced a fivefold increase in the yield and tensile strength of the matrix material [3, 4]. Subsequent developments further contributed to the surging interest in polymer–nanoparticle composites. In particular, the growing availability of nanoparticles of monodispersed size and shape, such as fullerenes, carbon nanotubes, inorganic nanoparticles, dendrimers, and bionanoparticles, and the refining of instrumentation to probe nano-objects, such as scanning force, laser scanning fluorescence, and electron microscopes, have spurred research aimed at probing the influence of particle size and shape on the properties of PMN...

Keywords

Silver Nanoparticles Surface Plasmon Resonance Surface Plasmon Resonance Absorption High Angle Annular Dark Field Surface Plasmon Resonance Absorption Band 

Notes

Acknowledgements

The authors thank the Center for Electron Nanoscopy of the Technical University of Denmark. The study reported in this communication is partly underpinned by the Directorate for Research of the European Commission in the frame of VII framework program under the contract: 213436-project acronym: Nanotough.

References

  1. 1.
    Baekeland LH (1909) Sci Am 68:322CrossRefGoogle Scholar
  2. 2.
    Goodyear C (1856) Dinglers Polytech J 139:376Google Scholar
  3. 3.
    Usuki A, Kojima M, Okada A, Fukushima Y, Kamigaito O (1993) J Mater Res 8:1179CrossRefGoogle Scholar
  4. 4.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185CrossRefGoogle Scholar
  5. 5.
    Martorana B, Carotenuto G, Pullini D, Zvezdin K, La Peruta G, Perlo P, Nicolais L (2006) Sens Actuators A Phys 129:176CrossRefGoogle Scholar
  6. 6.
    Martorana B, Carotenuto G, Pullini D, Zvezdin K, La Peruta G, Perlo P, Nicolais L (2005) Polym News 30:394CrossRefGoogle Scholar
  7. 7.
    Shi S, Ji W, Tang SH, Lang JP, Xin XQ (1994) J Am Chem Soc 116:3615CrossRefGoogle Scholar
  8. 8.
    Yu DB, Sun XQ, Bian JT, Tong ZC, Qian YT (2004) Phys E Low Dimens Syst Nanostruct 23:50CrossRefGoogle Scholar
  9. 9.
    Koch SW, Peyghambarian N, Gibbs HM (1988) J Appl Phys 63:R1CrossRefGoogle Scholar
  10. 10.
    Prasad PN (2004) Nanophotonics. Wiley, Hoboken, NJCrossRefGoogle Scholar
  11. 11.
    Tutt LW, Boggess TF (1993) Prog Quantum Electron 17:299CrossRefGoogle Scholar
  12. 12.
    Sun YP, Riggs JE, Rollins HW, Guduru R (1999) J Phys Chem B 103:77CrossRefGoogle Scholar
  13. 13.
    Grady NK, Halas NJ, Nordlander P (2004) Chem Phys Lett 399:167CrossRefGoogle Scholar
  14. 14.
    Brongersma ML, Hartman JW, Atwater HA (2000) Phys Rev B 62:R16356CrossRefGoogle Scholar
  15. 15.
    Carotenuto G, Nicolais L (2004) Compos B Eng 35:385CrossRefGoogle Scholar
  16. 16.
    de Leon AG, Dirix Y, Staedler Y, Feldman K, Hahner G, Caseri WR, Smith P (2000) Appl Opt 39:4847CrossRefGoogle Scholar
  17. 17.
    Dirix Y, Darribere C, Heffels W, Bastiaansen C, Caseri W, Smith P (1999) Appl Opt 38:6581CrossRefGoogle Scholar
  18. 18.
    Zimmermann L, Weibel M, Caseri W, Suter UW (1993) J Mater Res 8:1742CrossRefGoogle Scholar
  19. 19.
    Gonzales AL, Noguez C (2007) Phys Stat Sol (c) 4:4118CrossRefGoogle Scholar
  20. 20.
    Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG (2008) Spectrochim Acta A 71:186CrossRefGoogle Scholar
  21. 21.
    Zhao Y, Jiang Y, Fang Y (2006) Spectrochim Acta A 65:1003CrossRefGoogle Scholar
  22. 22.
    Evanoff DD, Chumanov G (2005) Chemphyschem 6:1221CrossRefGoogle Scholar
  23. 23.
    Carotenuto G, Nicolais L (2006) Metal–polymer nanocomposites. John Wiley & Sons, Inc., Hoboken, NJGoogle Scholar
  24. 24.
    Shim IK, Lee YI, Lee KJ, Joung J (2008) Mater Chem Phys 110:316CrossRefGoogle Scholar
  25. 25.
    Yamamoto M, Nakamoto M (2003) J Mater Chem 13:2064CrossRefGoogle Scholar
  26. 26.
    Hiramatsu H, Osterlok FE (2004) Chem Mater 16:2509CrossRefGoogle Scholar
  27. 27.
    Lee KJ, Jun BH, Choi J, Lee YI, Joung J, Oh YS (2007) Nanotechnology 18:335601/1CrossRefGoogle Scholar
  28. 28.
    Lee SJ, Han SW, Kim K (2002) Chem Commun 5:442Google Scholar
  29. 29.
    Navaladian S, Viswanathan B, Viswanath RP, Varadarajan TK (2007) Nanoscale Res Lett 2:44CrossRefGoogle Scholar
  30. 30.
    D’Urso L, Nicolosi V, Compagnini G, Puglisi O (2004) Appl Surf Sci 226(c):131CrossRefGoogle Scholar
  31. 31.
    Chen Z, Gao L (2007) Mater Res Bull 42:1657CrossRefGoogle Scholar
  32. 32.
    Yamamoto M, Kashiwagi Y, Nakamoto M (2006) Langmuir 22:8581CrossRefGoogle Scholar
  33. 33.
    Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Langmuir 23:5296CrossRefGoogle Scholar
  34. 34.
    Kashiwagi Y, Yamamoto M, Nakamoto M (2006) J Colloid Interface Sci 300:169CrossRefGoogle Scholar
  35. 35.
    Yang N, Aoki K (2005) J Phys Chem 109:23911 BCrossRefGoogle Scholar
  36. 36.
    Li Y, Wu Y, Ong BS (2005) J Am Chem Soc 127:3266CrossRefGoogle Scholar
  37. 37.
    La Mer VK (1952) Ind Eng Chem 6:1270CrossRefGoogle Scholar
  38. 38.
    Fievet F, Lagier JP, Figlarz M (2009) Mater Res Soc Bull 14:29CrossRefGoogle Scholar
  39. 39.
    Mie G (1908) Ann Phys (Leipz) 25:377CrossRefGoogle Scholar
  40. 40.
    Gonzalez AL, Noguez C (2007) Phys Stat Sol C 11:4Google Scholar
  41. 41.
    Noguez C (2005) Opt Mater 27:1204CrossRefGoogle Scholar
  42. 42.
    Fuchs R (1975) Phys Rev B 11:1732CrossRefGoogle Scholar
  43. 43.
    Schonauer D, Quinten M, Kreibig U (1989) Z PhysAtoms Mol Clust 12:527CrossRefGoogle Scholar
  44. 44.
    Chaudhary V, Thakur AK, Bhowmick AK (2011) J Mater Sci 46:6096. doi: https://doi.org/10.1007/s10853-011-5573-x CrossRefGoogle Scholar
  45. 45.
    Mondal B, Saha SK (2011) J Mater Sci 46:5153. doi: https://doi.org/10.1007/s10853-011-5446-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daniele Pullini
    • 1
  • Gianfranco Carotenuto
    • 2
  • Mariano Palomba
    • 1
    • 2
  • Alessandra Mosca
    • 3
  • Andy Horsewell
    • 3
  • Luigi Nicolais
    • 2
    • 4
  1. 1.Group Materials LabsFiat Research Centre ScpaOrbassanoItaly
  2. 2.Institute of Composite and Biomedical MaterialsNational Research CouncilNaplesItaly
  3. 3.Department of Mechanical Engineering & Center for Electron NanoscopyTechnical University of DenmarkKongens LyngbyDenmark
  4. 4.Department of Materials and Production EngineeringUniversity of Naples ‘Federico II’NaplesItaly

Personalised recommendations