Advertisement

Journal of Materials Science

, Volume 47, Issue 2, pp 1094–1099 | Cite as

Incorporation of lanthanide ions in lead titanate

  • A. Peláiz-BarrancoEmail author
  • Y. Méndez-González
  • D. C. Arnold
  • P. Saint-Grégoire
  • D. J. Keeble
Article

Abstract

Lanthanide ion doping of lead titanate was investigated using structural and differential scanning calorimetry measurements. Dense ceramics samples were prepared with starting compositions, Pb1−3x/2Ln x TiO3, assuming A-site substitution of Ln = La, Nd, Sm, Eu, Gd and Dy, at 2 and 8 at.%. Doping with La3+ reduced the tetragonality and cell volume. A systematic recovery in these values was observed for the smaller Ln3+ ions, suggesting the onset of partial substitution of the Ln ions at the B-site. The ferroelectric–paraelectric transition temperatures also recovered, consistent with an increased probability of B-site occupation with decreasing ion size. Evidence for site occupancy obtained from the presence cation vacancies is also discussed.

Keywords

Dope Sample Cation Vacancy Positron Lifetime Lead Titanate Positron Annihilation Lifetime Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

AP-B and YM-G wish to thank the Third World Academy of Sciences (RG/PHYS/LA Nos. 99-050, 02-225 and 05-043), to the ICTP, Trieste-Italy, for financial support of Latin-American Network of Ferroelectric Materials (NET-43), and to thank to R. de Lahaye Torres for sample preparation. AP-B and DJK thank the Royal Society of London for short-term visitor and international travel awards. AP-B acknowledges to the Conseil Régional Languedoc-Roussillon for her invitation in the University of Nîmes, France.

References

  1. 1.
    Rossetti GA, Cross LE, Cline JP (1995) J Mater Sci 30:24. doi: 10.1007/BF00352127 CrossRefGoogle Scholar
  2. 2.
    Ramirez-Rosales D, Zamorano-Ulloa R, Perez-Martinez O (2001) Solid State Commun 118:371CrossRefGoogle Scholar
  3. 3.
    Paris EC, Gurgel MFC, Boschi TM, Joya MR, Pizani PS, Souza AG, Leite ER, Varela JA, Longo E (2008) J Alloy Compd 462:157CrossRefGoogle Scholar
  4. 4.
    Iakovlev S, Solterbeck CH, Es-Souni M, Zaporojtchenko V (2004) Thin Solid Films 446:50CrossRefGoogle Scholar
  5. 5.
    Iakovlev S, Ratzke K, Es-Souni M (2004) Mater Sci Eng B 113:259Google Scholar
  6. 6.
    Dunbar TD, Warren WL, Tuttle BA, Randall CA, Tsur Y (2004) J Phys Chem B 108:908CrossRefGoogle Scholar
  7. 7.
    Buscaglia MT, Buscaglia V, Ghigna P, Viviani M, Spinolo G, Testino A, Nanni P (2004) PhysChemChemPhys 6:3710Google Scholar
  8. 8.
    Iakovlev S, Solterbeck CH, Es-Souni M (2003) J Electroceram 10:103CrossRefGoogle Scholar
  9. 9.
    Buscaglia MT, Viviani M, Buscaglia V, Bottino C, Nanni P (2002) J Am Ceram Soc 85:1569CrossRefGoogle Scholar
  10. 10.
    Tsur Y, Hitomi A, Scrymgeour I, Randall CA (2001) Jpn J Appl Phys 40:255CrossRefGoogle Scholar
  11. 11.
    Tsur Y, Dunbar TD, Randall CA (2001) J Electroceram 7:25CrossRefGoogle Scholar
  12. 12.
    Garg A, Agrawal DC (2001) Mater Sci Eng B 86:134CrossRefGoogle Scholar
  13. 13.
    Garg A, Goel TC (2000) J Mater Sci Mater Electron 11:225CrossRefGoogle Scholar
  14. 14.
    Lee WH, Groen WA, Schreinemacher H, Hennings D (2000) J Electroceram 5:31CrossRefGoogle Scholar
  15. 15.
    Buscaglia MT, Buscaglia V, Viviani M, Nanni P, Hanuskova M (2000) J Eur Ceram Soc 20:1997CrossRefGoogle Scholar
  16. 16.
    Martinez OP, Saniger JM, Garcia ET, Flores JO, Pinar FC, Llopiz JC, Barranco AP (1997) J Mater Sci Lett 16:1161Google Scholar
  17. 17.
    Pelaiz-Barranco A, Guerra JDS, Calderon-Pinar F, Arago C, Garcia-Zaldivar O, Lopez-Noda R, Gonzalo JA, Eiras JA (2009) J Mater Sci 44:204. doi: 10.1007/s10853-008-3100-5 CrossRefGoogle Scholar
  18. 18.
    Mackie RA, Pelaiz-Barranco A, Keeble DJ (2010) Phys Rev B 82:024113CrossRefGoogle Scholar
  19. 19.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefGoogle Scholar
  20. 20.
    Keizer K, Lansink GJ, Burggraaf AJ (1978) J Phys Chem Solids 39:59CrossRefGoogle Scholar
  21. 21.
    Espinosa GP (1962) J Chem Phys 37:2344CrossRefGoogle Scholar
  22. 22.
    Halliyal A, Kumar U, Newnham RE, Cross LE (1987) Am Ceram Soc Bull 66:671Google Scholar
  23. 23.
    Keeble DJ, Wicklein S, Dittmann R, Ravelli L, Mackie RA, Egger W (2010) Phys Rev Lett 105:226102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Peláiz-Barranco
    • 1
    Email author
  • Y. Méndez-González
    • 1
  • D. C. Arnold
    • 2
  • P. Saint-Grégoire
    • 3
    • 4
  • D. J. Keeble
    • 5
  1. 1.Facultad de Física-Instituto de Ciencia y Tecnología de MaterialesUniversidad de La HabanaLa HabanaCuba
  2. 2.School of ChemistryUniversity of St AndrewsSt AndrewsUK
  3. 3.Department of SciencesUniversity of NîmesNîmes Cedex 01France
  4. 4.C2M, Institut C. GerhardtMontpellier Cedex 05France
  5. 5.School of Engineering, Physics, and MathematicsUniversity of DundeeDundeeUK

Personalised recommendations