Advertisement

Journal of Materials Science

, Volume 47, Issue 3, pp 1234–1243 | Cite as

Microstructural evolution during mechanical milling of Ti/Al powder mixture and production of intermetallic TiAl cathode target

  • Brian GabbitasEmail author
  • Peng CaoEmail author
  • Stella Raynova
  • Deliang Zhang
Materials in New Zealand

Abstract

Titanium aluminides are of great technological interest because of their attractive mechanical properties. Mechanical milling/alloying is a promising powder metallurgical technique, which can achieve ultrafine, uniform and manipulable microstructures. In this study, we employed a recently revisited discus mill to produce a composite Ti–(50–57) at.%Al powder feedstock, which is suitable for hot consolidation to produce bulk cathode targets for physical vapour deposition (PVD) coatings. The effects of milling time, quantity of process control agent (PCA) and discus-to-powder weight ratio (DPR) on the microstructure evolution of the attendant Ti/Al composite powder were investigated in detail. It was found that to produce Ti/Al composite powders with a fine particle size and a uniform microstructure, the practicable processing parameters should be 2 or 3% isopropanol addition as PCA, 12 h of milling time and at least 13:1 DPR weight ratio. Cathode targets were produced by hot isostatic pressing (HIPing) the as-milled powders. The targets were then used to produce a PVD TiAlN coating which had an average microhardness of 2400 HV.

Keywords

Milling Powder Particle Composite Powder Mechanical Milling Milled Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hu D, Wu X, Loretto MH (2005) Intermetallics 13(9):914CrossRefGoogle Scholar
  2. 2.
    Gebauer K (2006) Intermetallics 14(4):355CrossRefGoogle Scholar
  3. 3.
    Liu K, Ma YC, Gao M, Rao GB, Li YY, Wei K, Wu X, Loretto MH (2005) Intermetallics 13(9):925CrossRefGoogle Scholar
  4. 4.
    Froes FH, Suryanarayana C, Eliezer D (1992) J Mater Sci 27(19):5113. doi: 1007/BF00553381 CrossRefGoogle Scholar
  5. 5.
    Ward CH (1993) Int Mater Rev 38:79Google Scholar
  6. 6.
    Lipsitt HA (1985) In: Koch CC, Liu CT, Stoloff NS (eds) High temperature ordered intermetallic alloys. Materials Research Society, Pittsburgh, PA, p 351Google Scholar
  7. 7.
    Kim Y-W (1992) Acta Metal Mater 40(6):1121CrossRefGoogle Scholar
  8. 8.
    Vujic D, Li Z, Whang SH (1988) Metal Trans A Phys Metal Mater Sci 19A:2445CrossRefGoogle Scholar
  9. 9.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  10. 10.
    Gilman PS, Benjamin JS (1983) Annu Rev Mater Sci 13:279CrossRefGoogle Scholar
  11. 11.
    Bieler TR, Mishra RS, Mukherjee AK (1996) Annu Rev Mater Sci 26:75CrossRefGoogle Scholar
  12. 12.
    Mishra RS, Mukherjee AK, Mukhopadhyay DK, Suryanarayana C, Froes FH (1996) Scripta Mater 34(11):1765CrossRefGoogle Scholar
  13. 13.
    Imayev RM, Kaibyshev OA, Salishchev GA (1992) Acta Metal Mater 40(3):581CrossRefGoogle Scholar
  14. 14.
    Suryanarayana C (1998) In: ASM Handbook, vol 7. ASM International, Materials Parks, OH, p 80Google Scholar
  15. 15.
    Liu ZG, Raynova S, Zhang DL (2006) Metal Mater Trans A 37A:225CrossRefGoogle Scholar
  16. 16.
    Zhang DL (2004) Prog Mater Sci 49:537CrossRefGoogle Scholar
  17. 17.
    Raynova S, Cao P, Gabbitas B, Zhang D (2006) Int J Mod Phys B 20:4679CrossRefGoogle Scholar
  18. 18.
    Cuevas FG, Clintas J, Montes JM, Gallardo JM (2006) J Mater Sci 41:8339. doi: 10.1007/s10853-006-1029-0 CrossRefGoogle Scholar
  19. 19.
    Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Reading, MassachusettsGoogle Scholar
  20. 20.
    Suryanarayana C (1995) Intermetallics 3(2):153CrossRefGoogle Scholar
  21. 21.
    Benjamin JS, Volin TE (1974) Metal Trans 5:1929CrossRefGoogle Scholar
  22. 22.
    Martelli S, Mazzone G, Vittori-Antisari MJ (1991) J Mater Res 6:499CrossRefGoogle Scholar
  23. 23.
    McDermott BT, Koch CC (1986) Scripta Metal 20:669CrossRefGoogle Scholar
  24. 24.
    Atzmon M (1990) Phys Rev Lett 64:487CrossRefGoogle Scholar
  25. 25.
    Li F, Ishihara KN, Shingu PH (1991) Metal Trans A 22:2849CrossRefGoogle Scholar
  26. 26.
    Bhattacharya P, Bellon P, Averback RS, Hales SJ (2004) J Alloys Compd 368(1–2):187CrossRefGoogle Scholar
  27. 27.
    Gerasimov KB, Pavlov SV (1996) J Alloys Compd 242(1–2):136CrossRefGoogle Scholar
  28. 28.
    Gerling R, Clemens H, Schimansky FP (2004) Adv Eng Mater 6:23CrossRefGoogle Scholar
  29. 29.
    Klassen T, Oehring M, Bormann R (1994) J Mater Res 9(1):47CrossRefGoogle Scholar
  30. 30.
    Oehring M, Appel F, Pfullmann T, Bormann R (1995) Appl Phys Lett 66(8):941CrossRefGoogle Scholar
  31. 31.
    Wenbin F, Lianxi H, Wenxiong H, Erde W, Xiaoqing L (2005) Mater Sci Eng A 403(1–2):186Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Waikato Centre for Advanced Materials (WaiCAM), School of EngineeringThe University of WaikatoHamiltonNew Zealand
  2. 2.Department of Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand

Personalised recommendations