Advertisement

Journal of Materials Science

, Volume 47, Issue 2, pp 1004–1010 | Cite as

On measurement of carbon content in retained austenite in a nanostructured bainitic steel

  • C. Garcia-Mateo
  • F. G. Caballero
  • M. K. Miller
  • J. A. Jimenez
Article

Abstract

In this study, the carbon content of retained austenite in a nanostructured bainitic steel was measured by atom probe tomography and compared with data derived from the austenite lattice parameter determined by X-ray diffraction. The results provide new evidence about the heterogeneous distribution of carbon in austenite, a fundamental issue controlling ductility in this type of microstructure.

Keywords

Ferrite Austenite Bainite Electron Energy Loss Spectroscopy Trip Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Spanish Ministry of Science and Innovation for funding this research under MAT2010-15330. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

References

  1. 1.
    Garcia-Mateo C, Caballero FG, Bhaseshia HKDH (2003) ISIJ Int 43:1238CrossRefGoogle Scholar
  2. 2.
    Garcia-Mateo C, Caballero FG (2005) ISIJ Int 45:1736CrossRefGoogle Scholar
  3. 3.
    Garcia-Mateo C, Caballero FG (2005) Mater Trans JIM 46:1839CrossRefGoogle Scholar
  4. 4.
    Zhang MX, Kelly PM (1998) Mater Charact 40:159CrossRefGoogle Scholar
  5. 5.
    Self PG, Bhadeshia HKDH, Stobbs WM (1981) Ultramicroscopy 6:29CrossRefGoogle Scholar
  6. 6.
    Stone HJ, Peet MJ, Bhadeshia HKDH, Withers PJ, Babu SS, Specht ED (2008) Proc R Soc Lond Ser A 464:1009CrossRefGoogle Scholar
  7. 7.
    Roberts CS (1953) Trans AIME 197:203Google Scholar
  8. 8.
    Ruhl RC, Cohen M (1969) Trans AIME 245:241Google Scholar
  9. 9.
    Ridley N, Stuart H, Zwell L (1969) Trans AIME 245:1834Google Scholar
  10. 10.
    Dyson DJ, Holmes B (1970) J Iron Steel Inst 208:469Google Scholar
  11. 11.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New YorkGoogle Scholar
  12. 12.
    Cheng L, Bottger A, de Keijser THH, Mittemeijer EJ (1990) Scr Metall Mater 24:509CrossRefGoogle Scholar
  13. 13.
    Onink M, Brackman CM, Tichelaar FD, Mittemeijer EJ, van der Zwaag S (1993) Scr Mater 29:1011CrossRefGoogle Scholar
  14. 14.
    Hanzaki AZ, Hodgson PD, Yue S (1995) ISIJ Int 35:324CrossRefGoogle Scholar
  15. 15.
    Girault E, Jacques P, Harlet PH, Mols K, van Humbeek J, Aernoudt E, Delannay F (1998) Mater Character 40:111CrossRefGoogle Scholar
  16. 16.
    Jacques P, Girault E, Catlin T, Geerlofs N, Kop T, van der Zwaag S, Delannay F (1999) Mater Sci Eng A 273–275:475Google Scholar
  17. 17.
    van Dijk NH, Butt AM, Zhao L, Sietsma J, Offerman SE, Wright JP, van der Zwaag S (2005) Acta Mater 53:5439CrossRefGoogle Scholar
  18. 18.
    Scott CP, Drillet J (2007) Scr Mater 56:489CrossRefGoogle Scholar
  19. 19.
    Springer Handbook on materials measurement methods (2006). In: Horst Czichos, Tetsuya Saito and Leslie Smith (eds), XXVI edn. Springer, BerlinGoogle Scholar
  20. 20.
    Bhadeshia HKDH, Waugh AR (1982) Acta Metall 30:775CrossRefGoogle Scholar
  21. 21.
    Hall DJ, Bhadeshia HKDH, Stobbs WM (1982) J Phys IV 43:449Google Scholar
  22. 22.
    Stark I, Smith GDW, Bhadeshia HKDH (1990) Metall Trans A 21A:837Google Scholar
  23. 23.
    Peet M, Babu SS, Miller MK, Bhadeshia HKDH (2004) Scr Mater 20:1277CrossRefGoogle Scholar
  24. 24.
    Caballero FG, Miller MK, Clarke AJ, Garcia-Mateo C (2010) Scr Mater 63:442CrossRefGoogle Scholar
  25. 25.
    Young RA (ed) (1993) The Rietveld Method. University Press, OxfordGoogle Scholar
  26. 26.
    Dickson MJ (1969) J Appl Crystallogr 2:176CrossRefGoogle Scholar
  27. 27.
    Babu SS, Specht ED, David SA, Karapetrova E, Zschack P, Peet M, Bhadeshia HKDH (2005) Metall Mater Trans A 36:3281CrossRefGoogle Scholar
  28. 28.
    Acet M, Gehrmann B, Wassermann EF, Bach H, Pepperhoff W (2001) J Magn Magn Mater 232:221CrossRefGoogle Scholar
  29. 29.
    King HW, Payzent EA (2001) Can Metall Q 40:385Google Scholar
  30. 30.
    Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2003) ISIJ Int 43:1821CrossRefGoogle Scholar
  31. 31.
    Garcia-Mateo C, Peet M, Caballero FG, Bhadeshia HKDH (2004) Mater Sci Technol 20:814CrossRefGoogle Scholar
  32. 32.
    Caballero FG, Garcia-Mateo C, Garcia de Andres C (2005) Mater Trans JIM 46:581CrossRefGoogle Scholar
  33. 33.
    Caballero FG, Miller MK, Babu SS, Garcia-Mateo C (2007) Acta Mater 55:381CrossRefGoogle Scholar
  34. 34.
    Miller MK (2000) Atom probe tomography. Kluwer Academic/Plenum Press, New York, p 28CrossRefGoogle Scholar
  35. 35.
    Hellman OC, Vandenbroucke JA, Rüsing J, Isheim D, Seidman DN (2000) Microsc Microanal 6:437Google Scholar
  36. 36.
    Caballero FG, Garcia-Mateo C, Santofimia MJ, Miller MK, Garcia de Andres C (2009) Acta Mater 57:8CrossRefGoogle Scholar
  37. 37.
    Bhadeshia HKDH, Edmonds DV (1983) Metal Sci 17:411CrossRefGoogle Scholar
  38. 38.
    Christian JW (1958) Acta Metall 6:377CrossRefGoogle Scholar
  39. 39.
    Kurdyumov GV, Khandros LG (1949) Dokl Akad Nauk SSSR 66:211Google Scholar
  40. 40.
    Chang LC, Bhadeshia HKDH (1995) Mater Sci Technol 11:105Google Scholar
  41. 41.
    Cornide J, Miyamoto G, Caballero FG, Furuhara T, Miller MK, Garcia-Mateo C (2011) Solid State Phenom 172–174:111Google Scholar
  42. 42.
    Bhadeshia HKDH, Edmonds DV (1979) Metall Trans 10:895CrossRefGoogle Scholar
  43. 43.
    Houillier RL, Begin G, Dube A (1971) Metall Trans 2:2645CrossRefGoogle Scholar
  44. 44.
    Matas SJ, Hehemann RF (1961) TMS AIME 221:179Google Scholar
  45. 45.
    Bhadeshia HKDH, Edmonds DV (1980) Acta Metall 28:1265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. Garcia-Mateo
    • 1
  • F. G. Caballero
    • 1
  • M. K. Miller
    • 2
  • J. A. Jimenez
    • 1
  1. 1.Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)MadridSpain
  2. 2.Materials Science and Technology DivisionOak Ridge National Laboratory (ORNL)Oak RidgeUSA

Personalised recommendations