Journal of Materials Science

, Volume 47, Issue 2, pp 999–1003 | Cite as

Synthesis and capacitive property of δ-MnO2 with large surface area

  • Xin Zhang
  • Xiaopei Chang
  • Na Chen
  • Kuan Wang
  • Liping Kang
  • Zong-huai Liu
Article

Abstract

δ-MnO2 with layered structure is synthesized in a mixed system of KMnO4 and C3H6O (epoxypropane) by a facile low-temperature hydrothermal method at 90 °C for 24 h. The obtained product is characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and N2 adsorption–desorption, and its electrochemical property was investigated by cyclic voltammetry method. Experiment results show that the as-synthesized product has a layered structure and a high specific surface area of 188 m2 g−1, and C3H6O existing in the reaction system plays a crucial role for the formation of δ-MnO2 particles. Electrochemical characterization indicates that the prepared material exhibits an ideal capacitive behavior with the initial capacitance value of 296 F g−1 in 1 mol L−1 Na2SO4 aqueous solution at a scan rate of 5 mV s−1 and good cycling behavior.

Keywords

Specific Capacitance Manganese Oxide Manganese Dioxide Average Oxide State Epoxypropane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank National Natural Science Foundation of China (20971082) and the Natural Science Key Foundation of Shaanxi Province (2011JZ001) for financial support for this research.

Supplementary material

10853_2011_5879_MOESM1_ESM.tif (248 kb)
Figure S1. SEM images of the obtained materials at different epoxypropane concentrations: a 0 mol L−1, b 0.2 mol L−1, c 0.4 mol L−1, and d 0.6 mol L−1. (TIFF 247 kb)

References

  1. 1.
    Yan D, Yan PX, Cheng S, Chen JT, Zhuo RF, Feng JJ, Zhang GA (2009) Cryst Growth Des 9:218CrossRefGoogle Scholar
  2. 2.
    Nagarajan N, Cheong M, Zhitomirsky I (2007) Mater Chem Phys 103:47CrossRefGoogle Scholar
  3. 3.
    Beaudrouet E, Salle ALGL, Guyomard D (2009) Electrochim Acta 54:1240CrossRefGoogle Scholar
  4. 4.
    Tian ZR, Tong W, Wang JY, Duan NG, Krishnan VV, Suib SL (1997) Science 276:926CrossRefGoogle Scholar
  5. 5.
    Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Carbon 48:3825CrossRefGoogle Scholar
  6. 6.
    Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB (2008) J Power Sour 178:483CrossRefGoogle Scholar
  7. 7.
    Komaba S, Ogata A, Tsuchikawa T (2008) Electrochem Commun 10:1435CrossRefGoogle Scholar
  8. 8.
    An GM, Yu P, Xiao MJ, Liu ZM, Miao ZJ, Ding KL, Mao LQ (2008) Nanotechnology 19:275709CrossRefGoogle Scholar
  9. 9.
    Yu P, Zhang X, Wang DL, Wang L, Ma YW (2009) Cryst Growth Des 9:528CrossRefGoogle Scholar
  10. 10.
    Devaraj S, Munichandraiah N (2008) J Phys Chem C 112:4406CrossRefGoogle Scholar
  11. 11.
    Luo JY, Cheng L, Xia YY (2007) Electrochem Commun 9:1404CrossRefGoogle Scholar
  12. 12.
    Tang XH, Liu Z-H, Zhang CX, Yang ZP, Wang ZL (2009) J Power Sour 193:939CrossRefGoogle Scholar
  13. 13.
    Wei WF, Cui XW, Chen WX, Ivey DG (2011) Chem Soc Rev 40:1697CrossRefGoogle Scholar
  14. 14.
    Ma RZ, Bando Y, Zhang LQ, Sasaki T (2004) Adv Mater 16:918CrossRefGoogle Scholar
  15. 15.
    Liu ZP, Ma RZ, Ebina Y, Takada K, Sasaki T (2007) Chem Mater 19:6504CrossRefGoogle Scholar
  16. 16.
    Zhang LC, Kang LP, Lv H, Su ZK, Ooi K, Liu Z-H (2008) J Mater Res 23:780CrossRefGoogle Scholar
  17. 17.
    Ge JC, Zhuo LH, Yang F, Tang B, Wu LZ, Tung C (2006) J Phys Chem B 110:17854CrossRefGoogle Scholar
  18. 18.
    Subramanian V, Zhu HW, Wei BQ (2006) J Power Sour 159:361CrossRefGoogle Scholar
  19. 19.
    Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) J Phys Chem B 109:20207CrossRefGoogle Scholar
  20. 20.
    Yuan CZ, Gao B, Zhang XG (2007) J Power Sour 173:606CrossRefGoogle Scholar
  21. 21.
    Kruk M, Jaroniec M (2001) Chem Mater 13:3169CrossRefGoogle Scholar
  22. 22.
    Xu RR, Pang WQ (2005) Chemistry—zeolites and porous materials. Science Press, BeijingGoogle Scholar
  23. 23.
    Xu CJ, Li BH, Du HD, Kang FY, Zeng YQ (2008) J Power Sour 180:664CrossRefGoogle Scholar
  24. 24.
    Yuan JQ, Liu Z-H, Qiao SF, Ma XR, Xu NC (2009) J Power Sour 189:1278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xin Zhang
    • 1
    • 2
  • Xiaopei Chang
    • 1
    • 2
  • Na Chen
    • 1
    • 2
  • Kuan Wang
    • 1
    • 2
  • Liping Kang
    • 1
    • 2
  • Zong-huai Liu
    • 1
    • 2
  1. 1.Key Laboratory of Applied Surface and Colloid ChemistryShaanxi Normal University, Ministry of EducationXi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations