Journal of Materials Science

, Volume 47, Issue 2, pp 919–928 | Cite as

Structural features of polyacrylonitrile-based carbon fibers

  • Wei Li
  • Donghui Long
  • Jin Miyawaki
  • Wenming Qiao
  • Licheng Ling
  • Isao Mochida
  • Seong-Ho Yoon


The structural changes as functions of spinning conditions and heat treatments were investigated with respect to the structural feature of PAN-based carbon fibers by scanning tunneling microscopy (STM). The distinct granule structure on the cross section of both high tensile strength and high modulus carbon fibers was observed by SEM, while slender granule-shape domain on the longitudinal surface was revealed by STM. A structure model was proposed, which depicted that the PAN-based carbon fiber was a heterogeneous structure composed of aggregated mesostructural domains. These domains were closely arranged into spiral form along fiber axis, allowing the fibers have high strength and good elongation. The initial shape and size of domains was determined by the precursor composition and spinning conditions and also strongly depended on the heat-treated temperature and stretching conditions. The smaller or slender domain, the higher tensile strength obtained for fibers. We expect that the PAN-based carbon fiber with better performance should be produced by optimizing the size and shape of these domains.


Carbon Fiber Scanning Tunneling Microscopy Fiber Axis Scanning Tunneling Microscopy Image Precursor Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bahl OP, Shen Z, Lavin JG, Ross RA (1998) In: Donnet JB (ed) Manufacture of carbon fibers. Marcel Dekker, New York, p 1Google Scholar
  2. 2.
    Morgan P (2005) Carbon fibers and their composites. CRC Press, Taylor & Francis Group, LondonCrossRefGoogle Scholar
  3. 3.
    Diefendorf RJ, Tokarsky E (1975) Polym Eng Sci 15:150CrossRefGoogle Scholar
  4. 4.
    Ruland W (1990) Adv Mater 2:528CrossRefGoogle Scholar
  5. 5.
    Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Graphite fibers and filaments, vol 5. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Traceski TF (1999) Acquis Rev Quart:179Google Scholar
  7. 7.
    Clarke AJ, Bailey JE (1973) Nature 243:146CrossRefGoogle Scholar
  8. 8.
    Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K (1996) Carbon 34:941CrossRefGoogle Scholar
  9. 9.
    Goodhew PJ, Clarke AJ, Bailey JE (1975) Mater Sci Eng 17:3CrossRefGoogle Scholar
  10. 10.
    Fitzer E (1989) Carbon 27:621CrossRefGoogle Scholar
  11. 11.
    Bashir Z (1991) Carbon 29:1081CrossRefGoogle Scholar
  12. 12.
    Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stabil 92:1421CrossRefGoogle Scholar
  13. 13.
    Mittal J, Mathur RB, Bahl OP (1997) Carbon 35:1196CrossRefGoogle Scholar
  14. 14.
    Edie DD (1998) Carbon 36:345CrossRefGoogle Scholar
  15. 15.
    Wang XZ, Jie L, Gang W (2003) Carbon 41:2805CrossRefGoogle Scholar
  16. 16.
    Bahl OP, Mathur RB, Kundra KD (1981) Fiber Sci Technol 15:147CrossRefGoogle Scholar
  17. 17.
    Fitzer E, Frohs W, Heine M (1986) Carbon 24:387CrossRefGoogle Scholar
  18. 18.
    Sen K, Bahrami SH, Bajaj P (1996) J Macromol Sci Rev Macromol Chem Phys C36:1Google Scholar
  19. 19.
    Jain MK, Abhiraman AS (1987) J Mater Sci 22:278. doi: 10.1007/BF01160584 CrossRefGoogle Scholar
  20. 20.
    Jain MK, Balasubramanian M, Desai P, Abhiraman AS (1987) J Mater Sci 22:301. doi: 10.1007/BF01160585 CrossRefGoogle Scholar
  21. 21.
    Liu XD, Ruland W (1993) Macromolecules 26:3030CrossRefGoogle Scholar
  22. 22.
    Thiinemann AF, Ruland W (2000) Macromolecules 33:1848CrossRefGoogle Scholar
  23. 23.
    Johnson DJ, Tyson CN (1969) J Phys D Appl Phys 2:787CrossRefGoogle Scholar
  24. 24.
    Mencik Z, Plummer HK, Bartosiewicz L (1975) Carbon 13:417CrossRefGoogle Scholar
  25. 25.
    Bennett SC, Johnson DJ (1979) Carbon 17:25CrossRefGoogle Scholar
  26. 26.
    Deurbergue A, Oberlin A (1992) Carbon 30:981CrossRefGoogle Scholar
  27. 27.
    Neffe S (1987) Carbon 25:761CrossRefGoogle Scholar
  28. 28.
    Barnet FR, Norr MK (1976) Composites 7:93CrossRefGoogle Scholar
  29. 29.
    Guigon M, Oberlin A, Desarmot G (1984) Fiber Sci Technol 20:55CrossRefGoogle Scholar
  30. 30.
    Guigon M, Oberlin A, Desarmot G (1984) Fibre Sci Technol 20:177CrossRefGoogle Scholar
  31. 31.
    Vezie DL, Adams WW (1990) J Mater Sci Lett 9:883CrossRefGoogle Scholar
  32. 32.
    Yoon SH, Korai Y, Mochida I, Yokogawa K, Fukuyama S, Yoshimura M (1996) Carbon 34:83CrossRefGoogle Scholar
  33. 33.
    Hong SH, Korai Y, Mochida I (1999) Carbon 37:917CrossRefGoogle Scholar
  34. 34.
    Hong SH, Yoon SH, Mochida I (2000) Carbon 38:805CrossRefGoogle Scholar
  35. 35.
    Bai YJ, Wang CG, Lun N, Wang YY, Yu MJ, Zhu B (2006) Carbon 44:1773CrossRefGoogle Scholar
  36. 36.
    Hoffman WP (1992) Carbon 30:315CrossRefGoogle Scholar
  37. 37.
    Brown NMD, You HX (1990) Surf Sci 237:273CrossRefGoogle Scholar
  38. 38.
    Donnet JB, Qin RY (1993) Carbon 31:7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wei Li
    • 1
  • Donghui Long
    • 2
  • Jin Miyawaki
    • 1
  • Wenming Qiao
    • 2
  • Licheng Ling
    • 2
  • Isao Mochida
    • 1
  • Seong-Ho Yoon
    • 1
  1. 1.Institute for Materials Chemistry and EngineeringKyushu UniversityKasugaJapan
  2. 2.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations