Journal of Materials Science

, Volume 47, Issue 2, pp 883–891 | Cite as

A neural network approach for the prediction of the refractive index based on experimental data

  • Alex Alexandridis
  • Eva Chondrodima
  • Konstantinos Moutzouris
  • Dimos Triantis


This article presents a systematic approach for correlating the refractive index of different material kinds and forms with experimentally measured inputs like wavelength, temperature, and concentration. The correlation is accomplished using neural network models, which can deal effectively with the nonlinear nature of the problem without requiring a predefined form of equation, while taking into account all the parameters affecting the refractive index. The proposed methodology employs the powerful radial basis function network architecture and the neural network training procedure is accomplished using an innovative algorithm, which provides results with increased prediction accuracy. The methodology is applied to two cases, involving the estimation of the refractive index of semiconductor material crystals and an ethanol–water mixture and the results show that the refractive index predictions are accurate approximately to the same number of decimal places as the real measurements. Comparisons with other neural network training methods, but also with empirical forms like the Sellmeier equation, highlight the superiority of the proposed approach.


Radial Basis Function Radial Basis Function Neural Network Radial Basis Function Network Validation Dataset Decimal Digit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hervé P, Vandamme LKJ (1994) Infrared Phys Technol 35(4):609CrossRefGoogle Scholar
  2. 2.
    Knoll W (1998) Annu Rev Phys Chem 49:569CrossRefGoogle Scholar
  3. 3.
    Lisa G, Lisa C (2007) Rev Roum Chim 52:647Google Scholar
  4. 4.
    Kang E-S, Lee TH, Bae BS (2002) Appl Phys Lett 81:1438CrossRefGoogle Scholar
  5. 5.
    Schlarb U, Betzler K (1993) J Appl Phys 73(7):3472CrossRefGoogle Scholar
  6. 6.
    Cross M, Adams MJ (1974) Opt Quantum Electron 6(3):199Google Scholar
  7. 7.
    Souri D, Salehizadeh SA (2009) J Mater Sci 44:5800. doi: 10.1007/s10853-009-3814-z CrossRefGoogle Scholar
  8. 8.
    Ouendadji S, Ghemid S, Bouarissa N, Meradji H, Hassan FEH (2011) J Mater Sci 46:3855. doi: 10.1007/s10853-011-5306-1 CrossRefGoogle Scholar
  9. 9.
    Jlassi I, Elhouichet H, Ferid M (2011) J Mater Sci 46:806. doi: 10.1007/s10853-010-4820-x CrossRefGoogle Scholar
  10. 10.
    Obreja P, Kusko M, Cristea D, Purica M, Comanescu F (2006) Doped polymers with controllable refractive index—preparation, processing and applications. In: Symposium on photonics technologies for 7th framework program, Wroclaw, pp 392–395Google Scholar
  11. 11.
    Böhm J, Haußelt J, Henzi P, Litfin K, Hanemann T (2004) Adv Eng Mater 6:52CrossRefGoogle Scholar
  12. 12.
    Molla AR, Tarafder A, Karmakar B (2011) J Mater Sci 46:2967. doi: 10.1007/s10853-010-5173-1 CrossRefGoogle Scholar
  13. 13.
    Austin RW, Halikas G (1976) The index of refraction of seawater. Scripps Institute of oceanography, Technical Report SIO Ref. No. 76-1Google Scholar
  14. 14.
    Harvey AH, Gallagher JS, Sengers JMHL (1998) J Phys Chem Ref Data 27(4):761CrossRefGoogle Scholar
  15. 15.
    Ciddor PE (1996) Appl Opt 35(9):1566CrossRefGoogle Scholar
  16. 16.
    Moosmüller H, Arnott WP (1996) Opt Lett 21:438CrossRefGoogle Scholar
  17. 17.
    Longhurst RS (1973) General and physical optics. Longmans, LondonGoogle Scholar
  18. 18.
    Jarvis PR, Meeten GH (1986) J Phys E Sci Instrum 19:296CrossRefGoogle Scholar
  19. 19.
    Zvirgzd JA (1975) Phys Status Solidi A 32(2):K181CrossRefGoogle Scholar
  20. 20.
    Meeten GH (ed) (1986) Refraction and extinction of polymers. Optical properties of polymers. Elsevier Applied Science, LondonGoogle Scholar
  21. 21.
    Nussbaumer RJ, Halter M, Tervoort T, Caseri WR, Smith P (2005) J Mater Sci 40:575. doi: 10.1007/s10853-005-6291-z CrossRefGoogle Scholar
  22. 22.
    Zhang J, Lu ZH, Wang LJ (2008) Appl Opt 47(17):3143CrossRefGoogle Scholar
  23. 23.
    Hum DS, Fejer MM (2007) Comptes Rendus Phys 8:180CrossRefGoogle Scholar
  24. 24.
    Valdivia CE, Sones CL, Scott JG, Mailis S, Eason RW, Scrymgeour DA, Gopalan V, Jungk T, Soergel E, Clark I (2005) Appl Phys Lett 86:022906CrossRefGoogle Scholar
  25. 25.
    Stone JA, Stejskal A (2004) Metrologia 41(3):189CrossRefGoogle Scholar
  26. 26.
    Endo Y, Tagiri-Endo M, Seo HK, Fujimoto K (2001) J Chromatogr A 911(1):39CrossRefGoogle Scholar
  27. 27.
    Shaw CJ, Huang A, Zhang X (2003) J Chromatogr A 987(1–2):439CrossRefGoogle Scholar
  28. 28.
    Tan CH, Huanga ZJ, Huang XG (2010) Anal Biochem 401(1):144CrossRefGoogle Scholar
  29. 29.
    Sellmeier W (1871) Ann der Phys und Chem 219:272CrossRefGoogle Scholar
  30. 30.
    Ghosh G, Endo M, Iwasaki T (1994) J Lightwave Technol 12(8):1338CrossRefGoogle Scholar
  31. 31.
    Liu Y, Daum PH (2008) J Aerosol Sci 39(11):974CrossRefGoogle Scholar
  32. 32.
    Xu J, Chen B, Zhang Q, Guo B (2004) Polymer 45(26):8651CrossRefGoogle Scholar
  33. 33.
    Rabah M, Abbar B, Al-Douri Y, Bouhafs B, Sahraoui B (2003) Mater Sci Eng B 100(2):163CrossRefGoogle Scholar
  34. 34.
    Yu X, Yi B, Wang X (2007) J Comput Chem 28(14):2336CrossRefGoogle Scholar
  35. 35.
    Cao X, Hancock BC, Leyva N, Becker J, Yu W, Masterson VM (2009) Int J Pharm 368(1–2):16CrossRefGoogle Scholar
  36. 36.
    Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  37. 37.
    Moody J, Darken C (1989) Neural Comput 2:281CrossRefGoogle Scholar
  38. 38.
    Sarimveis H, Alexandridis A, Tsekouras G, Bafas G (2002) Ind Eng Chem Res 41:751CrossRefGoogle Scholar
  39. 39.
    Ning L (2009) J Mater Sci 44:3156. doi: 10.1007/s10853-009-3420-0 CrossRefGoogle Scholar
  40. 40.
    Lin YC, Fang X, Wang YP (2008) J Mater Sci 43:5508. doi: 10.1007/s10853-008-2832-6 CrossRefGoogle Scholar
  41. 41.
    Garcia-Mateo C, Capdevila C, Caballero FG, CGd Andres (2007) J Mater Sci 42:5391. doi: 10.1007/s10853-006-0881-2 CrossRefGoogle Scholar
  42. 42.
    Mandal S, Sivaprasad PV, Dube RK (2007) J Mater Sci 42:2724. doi: 10.1007/s10853-006-1275-1 CrossRefGoogle Scholar
  43. 43.
    Liujie X, Jiandong X, Shizhong W, Tao P, Yongzhen Z, Rui L (2007) J Mater Sci 42:2565. doi: 10.1007/s10853-006-1278-y CrossRefGoogle Scholar
  44. 44.
    Nazari A, Milani AA (2011) J Mater Sci 46(18):6007. doi: 10.1007/s10853-011-5563-z CrossRefGoogle Scholar
  45. 45.
    Ejigu EK, Lacquet BM (2010) S Afr J Sci 106(7–8):56Google Scholar
  46. 46.
    Schubert MF, Poxson DJ, Mont FW, Kim JK, Schubert EF (2010) Appl Phys Express 3:082502CrossRefGoogle Scholar
  47. 47.
    Fernandes VR, Vicente CMS, Wada N, André PS, Ferreira RAS (2010) Opt Express 18(16):16580CrossRefGoogle Scholar
  48. 48.
    Ghosh S, Dutta PK, Bose DN (1999) Mater Sci Semicond Process 2(1):1CrossRefGoogle Scholar
  49. 49.
    Tabet MF, McGahan WA (2000) Thin Solid Films 370(1–2):122CrossRefGoogle Scholar
  50. 50.
    Darken C, Moody J (1990) Fast adaptive K-means clustering: some empirical results. In: IEEE INNS international joint conference on neural networks, San Diego, CA, pp 233–238Google Scholar
  51. 51.
    Afantitis A, Melagraki G, Makridima K, Alexandridis A, Sarimveis H, Iglessi-Markopoulou O (2005) J Mol Struct Theochem 716:193CrossRefGoogle Scholar
  52. 52.
    Melagraki G, Afantitis A, Sarimveis H, Igglessi-Markopoulou O, Alexandridis A (2006) Mol Divers 10:213CrossRefGoogle Scholar
  53. 53.
    Alexandridis A, Sarimveis H, Bafas G (2003) Neural Netw 16:1003CrossRefGoogle Scholar
  54. 54.
    Alexandridis A, Sarimveis H (2005) AICHE J 51(9):2495CrossRefGoogle Scholar
  55. 55.
    Alexandridis A, Patrinos P, Sarimveis H, Tsekouras G (2005) Chemom Intell Lab Syst 75:149CrossRefGoogle Scholar
  56. 56.
    Patrinos P, Alexandridis A, Ninos K, Sarimveis H (2010) Int J Neural Syst 20(5):365CrossRefGoogle Scholar
  57. 57.
    Alexandridis A, Sarimveis H, Ninos K (2011) Adv Eng Softw 42(10):830CrossRefGoogle Scholar
  58. 58.
    Zadeh LA (1996) Fuzzy sets, fuzzy logic and fuzzy systems. World Scientific, River Edge, NJGoogle Scholar
  59. 59.
    Nie J (1997) IEEE Trans Fuzzy Syst 5:304CrossRefGoogle Scholar
  60. 60.
    Soref R (2010) Nat Photon 4:495CrossRefGoogle Scholar
  61. 61.
    Frey BJ, Leviton BD, Madison TJ (2006) Temperature-dependent refractive index of silicon and germanium. In: Proceedings of the SPIE, vol 6273. SPIE, Orlando, Fla Google Scholar
  62. 62.
    May RJ, Maier HR, Dandy GC (2010) Neural Netw 23(2):283CrossRefGoogle Scholar
  63. 63.
    Haofei Z, Guoping X, Fangting Y, Han Y (2007) Expert Syst Appl 33(2):347CrossRefGoogle Scholar
  64. 64.
    Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, BerlinGoogle Scholar
  65. 65.
    Jiménez Riobóo RJ, Philipp M, Ramos MA, Kruger JK (2009) Eur Phys J E 30:19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alex Alexandridis
    • 1
  • Eva Chondrodima
    • 1
  • Konstantinos Moutzouris
    • 1
  • Dimos Triantis
    • 1
  1. 1.Laboratory of Electric Properties of Materials, Department of ElectronicsTechnological Educational Institute of AthensAigaleoGreece

Personalised recommendations