Journal of Materials Science

, Volume 47, Issue 2, pp 815–823 | Cite as

Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy

  • Siddhartha Pathak
  • Johann Michler
  • Kilian Wasmer
  • Surya R. Kalidindi


In this article, we report on the application of our spherical nanoindentation data analysis protocols to study the mechanical response of grain boundary regions in as-cast and 30% deformed polycrystalline Fe–3%Si steel. In particular, we demonstrate that it is possible to investigate the role of grain boundaries in the mechanical deformation of polycrystalline samples by systematically studying the changes in the indentation stress–strain curves as a function of the distance from the grain boundary. Such datasets, when combined with the local crystal lattice orientation information obtained using orientation imaging microscopy, open new avenues for characterizing the mechanical behavior of grain boundaries based on their misorientation angle, dislocation density content near the boundary, and their propensity for dislocation source/sink behavior.


Contact Radius Orientation Image Microscopy Dislocation Source Indentation Site Indentation Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors acknowledge funding from ARO grant W911NF-10-1-0409, Dr. Dejan Stojakovic’s help in sample preparation, and many insightful discussions with Prof. Roger Doherty (Drexel University) in preparation of this manuscript. The authors thank Dr. Manuel Pouchon for allowing the use of the Agilent G200® nanoindentation system located at the Paul Scherrer Institut, Villigen, Switzerland, while the MTS XP® System used in this study is maintained and operated by the Centralized Research Facilities in the College of Engineering at Drexel University.


  1. 1.
    Hall EO (1951) Proc Phys Soc 64:747CrossRefGoogle Scholar
  2. 2.
    Petch NJ (1953) Iron Steel Inst J 174:25Google Scholar
  3. 3.
    Lasalmonie A, Strudel JL (1986) J Mater Sci 21:1837. doi: 10.1007/BF00547918 CrossRefGoogle Scholar
  4. 4.
    Meyers M, Chawla K (2007) In: Mechanical Behavior Of Materials, Prentice-Hall, Upper Saddle RiverGoogle Scholar
  5. 5.
    Meyers MA, Ashworth E (1982) Philos Mag A 46:737CrossRefGoogle Scholar
  6. 6.
    Li JCM (1963) Trans Metall Soc AIME 227:239Google Scholar
  7. 7.
    Bucaille JL, Stauss S, Felder E, Michler J (2003) Acta Mater 51:1663CrossRefGoogle Scholar
  8. 8.
    Stauss S, Schwaller P, Bucaille JL, Rabe R, Rohr L, Michler J, Blank E (2003) Microelectron Eng 67–68:818CrossRefGoogle Scholar
  9. 9.
    Kalidindi SR, Pathak S (2008) Acta Mater 56:3523CrossRefGoogle Scholar
  10. 10.
    Pathak S, Kalidindi SR, Klemenz C, Orlovskaya N (2008) J Eur Ceramic Soc 28:2213CrossRefGoogle Scholar
  11. 11.
    Pathak S, Shaffer J, Kalidindi SR (2009) Scr Mater 60:439CrossRefGoogle Scholar
  12. 12.
    Pathak S, Stojakovic D, Kalidindi SR (2009) Acta Mater 57:3020CrossRefGoogle Scholar
  13. 13.
    Kunz A, Pathak S, Greer JR (2011) Acta Mater 59:4416CrossRefGoogle Scholar
  14. 14.
    Ohmura T, Tsuzaki K, Fuxing Y (2005) Mater Trans 46:2026CrossRefGoogle Scholar
  15. 15.
    Wang MG, Ngan AHW (2004) J Mater Res 19:2478CrossRefGoogle Scholar
  16. 16.
    Lee CS, Han GW, Smallman RE, Feng D, Lai JKL (1999) Acta Mater 47:1823CrossRefGoogle Scholar
  17. 17.
    Wo PC, Ngan AHW (2004) J Mater Res 19:189CrossRefGoogle Scholar
  18. 18.
    Soifer YM, Verdyan A, Kazakevich M, Rabkin E (2002) Scr Mater 47:799CrossRefGoogle Scholar
  19. 19.
    Ohmura T, Tsuzaki K (2008) J Phys D 41:074015Google Scholar
  20. 20.
    Goken M, Kempf M, Bordenet M, Vehoff H (1999) Surface Interface Anal 27:302CrossRefGoogle Scholar
  21. 21.
    Ohmura T, Tsuzaki K (2007) J Mater Sci 42:1728. doi: 10.1007/s10853-006-0885-y CrossRefGoogle Scholar
  22. 22.
    Soer WA, Aifantis KE, De Hosson JTM (2005) Acta Mater 53:4665CrossRefGoogle Scholar
  23. 23.
    Soer WA, De Hosson JTM (2005) Mater Lett 59:3192CrossRefGoogle Scholar
  24. 24.
    Eliash T, Kazakevich M, Semenov VN, Rabkin E (2008) Acta Mater 56:5640CrossRefGoogle Scholar
  25. 25.
    Adams BL (1997) Ultramicroscopy 67:11CrossRefGoogle Scholar
  26. 26.
    Adams BL, Wright SI, Kunze K (1993) Metall Trans A 24A:819Google Scholar
  27. 27.
    Pathak S, Stojakovic D, Doherty R, Kalidindi SR (2009) J Mater Res 24:1142CrossRefGoogle Scholar
  28. 28.
    Britton TB, Randman D, Wilkinson AJ (2009) J Mater Res 24:607CrossRefGoogle Scholar
  29. 29.
    Hertz H (1896) Miscellaneous Papers. MacMillan and Co. Ltd., New YorkGoogle Scholar
  30. 30.
    Johnson KL (1987) Contact Mechanics: Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Sneddon IN (1965) Int J Eng Sci 3:47CrossRefGoogle Scholar
  32. 32.
    Kalidindi SR, Bhattacharyya A, Doherty RD (2004) In: Proceedings of the Royal Society of London, Series A (Mathematical, Physical and Engineering Sciences) 460: 1935Google Scholar
  33. 33.
    Sun S, Adams BL, King WE (2000) Philos Mag A 80:9CrossRefGoogle Scholar
  34. 34.
    Sun S, Adams BL, Shet C, Saigal S, King W (1998) Scr Mater 39:501CrossRefGoogle Scholar
  35. 35.
    Zaefferer S, Kuo JC, Zhao Z, Winning M, Raabe D (2003) On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater 51:4719CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Siddhartha Pathak
    • 1
    • 2
    • 4
  • Johann Michler
    • 1
  • Kilian Wasmer
    • 1
  • Surya R. Kalidindi
    • 2
    • 3
  1. 1.EMPA, Swiss Federal Laboratory for Materials Science and TechnologyThunSwitzerland
  2. 2.Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA
  3. 3.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphiaUSA
  4. 4.Materials Science, California Institute of Technology (Caltech)PasadenaUSA

Personalised recommendations