Journal of Materials Science

, Volume 47, Issue 2, pp 730–738 | Cite as

Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites

  • Yuqi Li
  • Qihua Wang
  • Tingmei Wang
  • Guangqin Pan


Graphene oxide (GO)/nitrile rubber (NBR) nanocomposites with various contents of GO were prepared by a solution-mixing method,in this study. The GO sheets were exfoliated from natural fake graphite by an improved Hummers method and could be further dispersed homogeneously in NBR matrix. The thickness and size of the GO sheets were observed by atomic force microscopy and transmission electron microscopy. The tribological properties of the GO/NBR nanocomposites were evaluated on a ring-block MRH-3 wear tester under dry sliding and water-lubricated conditions. The worn surface morphologies of the GO/NBR nanocomposites were observed by a scanning electron microscopy. It was found that under dry sliding, both the friction coefficient (COF) and specific wear rate of the nanocomposites decreased dramatically at first, then increased with increasing GO contents, while under water-lubricated condition, both the COF and specific wear rate of the nanocomposites decreased with increasing GO contents. Finally, the friction and wear mechanisms of the GO/NBR nanocomposites were tentatively proposed.


Graphene Oxide Wear Surface Tribological Property Wear Scar Transfer Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial supports from the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51025517), the Innovative Group Foundation of NSFC (Grant No. 50721062), and the 973 Project of China (2007CB607606), the National Defense Basic Scientific Research Project (A1320110011).


  1. 1.
    Geim AK (2009) Science 324(5934):1530. doi: 10.1126/science.1158877 CrossRefGoogle Scholar
  2. 2.
    Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) J Mater Chem 21:3301CrossRefGoogle Scholar
  3. 3.
    Jang BZ, Zhamu A (2008) J Mater Sci 43(15):5092. doi: 10.1007/s10853-008-2755-2 CrossRefGoogle Scholar
  4. 4.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) Compos Sci Technol 67(7–8):1709. doi: 10.1016/j.compscitech.2006.06.015 CrossRefGoogle Scholar
  5. 5.
    Wang Y, Shi ZX, Fang JH, Xu HJ, Yin J (2011) Carbon 49(4):1199. doi: 10.1016/j.carbon.2010.11.036 CrossRefGoogle Scholar
  6. 6.
    Kim H, Macosko CW (2009) Polymer 50(15):3797. doi: 10.1016/j.polymer.2009.05.038 CrossRefGoogle Scholar
  7. 7.
    Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Adv Mater 12(10):750CrossRefGoogle Scholar
  8. 8.
    Qiu JJ, Wang SR (2011) J Appl Polym Sci 119(6):3670. doi: 10.1002/app.33068 CrossRefGoogle Scholar
  9. 9.
    Pan YZ, Wu TF, Bao HQ, Li L (2011) Carbohydr Polym 83(4):1908. doi: 10.1016/j.carbpol.2010.10.054 CrossRefGoogle Scholar
  10. 10.
    Li R, Liu CH, Ma J (2011) Carbohydr Polym 84(1):631. doi: 10.1016/j.carbpol.2010.12.041 CrossRefGoogle Scholar
  11. 11.
    Jung JH, Jeon JH, Sridhar V, Oh IK (2011) Carbon 49(4):1279. doi: 10.1016/j.carbon.2010.11.047 CrossRefGoogle Scholar
  12. 12.
    Bai X, Wan CY, Zhang Y, Zhai YH (2011) Carbon 49(5):1608. doi: 10.1016/j.carbon.2010.12.043 CrossRefGoogle Scholar
  13. 13.
    Saffar A, Shojaei A, Arjmand M (2010) Wear 269(1–2):145. doi: 10.1016/j.wear.2010.03.021 CrossRefGoogle Scholar
  14. 14.
    Pan GL, Guo QA, Ding JA, Zhang WD, Wang XM (2010) Tribol Int 43(8):1318. doi: 10.1016/j.triboint.2009.12.068 CrossRefGoogle Scholar
  15. 15.
    Österle W, Dörfel I, Prietzel C, Rooch H, Cristol-Bulthé AL, Degallaix G, Desplanques Y (2009) Wear 267(5–8):781. doi: 10.1016/j.wear.2008.11.023 CrossRefGoogle Scholar
  16. 16.
    Yu S, Hu H, Yin J (2008) Wear 265(3–4):361. doi: 10.1016/j.wear.2007.11.006 CrossRefGoogle Scholar
  17. 17.
    Schön J (2000) Wear 237(1):77. doi: 10.1016/s0043-1648(99)00315-4 CrossRefGoogle Scholar
  18. 18.
    Lee H, Lee N, Seo Y, Eom J, Lee S (2009) Nanotechnology 20(32). doi: 10.1088/0957-4484/20/32/325701
  19. 19.
    Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, Hone J (2010) Science 328(5974):76. doi: 10.1126/science.1184167 CrossRefGoogle Scholar
  20. 20.
    Lee C, Wei X, Li Q, Carpick R, Kysar JW, Hone J (2009) Phys Stat Sol b 246(11–12):2562. doi: 10.1002/pssb.200982329 CrossRefGoogle Scholar
  21. 21.
    Bonelli F, Manini N, Cadelano E, Colombo L (2009) Eur Phys J B 70(4):449. doi: 10.1140/epjb/e2009-00239-7 CrossRefGoogle Scholar
  22. 22.
    Kaiser A, Brandau S, Klimpel M, Barner-Kowollik C (2010) Macromol Rapid Commun 31(18):1616. doi: 10.1002/marc.201000162 CrossRefGoogle Scholar
  23. 23.
    Kader MA, Kim K, Lee YS, Nah C (2006) J Mater Sci 41(22):7341. doi: 10.1007/s10853-006-0792-2 CrossRefGoogle Scholar
  24. 24.
    Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S (2010) J Mater Sci 45(5):1193. doi: 10.1007/s10853-009-4064-9 CrossRefGoogle Scholar
  25. 25.
    Degrange JM, Thomine A, Kapsa P, Pelletier JM, Chazeau L, Vigier G, Dudragne G, Guerbe L (2005) Wear 259(1–6):684. doi: 10.1016/j.wear.2005.02.110 CrossRefGoogle Scholar
  26. 26.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4(8):4806. doi: 10.1021/nn1006368 CrossRefGoogle Scholar
  27. 27.
    Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3(9):2653. doi: 10.1021/nn900227d CrossRefGoogle Scholar
  28. 28.
    Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem Int Ed 50(14):3173. doi: 10.1002/anie.201007520 CrossRefGoogle Scholar
  29. 29.
    Shen JF, Hu YZ, Shi M, Lu X, Qin C, Li C, Ye MX (2009) Chem Mater 21(15):3514. doi: 10.1021/cm901247t CrossRefGoogle Scholar
  30. 30.
    Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3(9):2547. doi: 10.1021/nn900694t CrossRefGoogle Scholar
  31. 31.
    Park S, Ruoff RS (2009) Nat Nano 4(4):217CrossRefGoogle Scholar
  32. 32.
    Das A, Jurk R, Stockelhuber KW, Heinrich G (2007) Exp Polym Lett 1(11):717. doi: 10.3144/expresspolymlett.2007.99 CrossRefGoogle Scholar
  33. 33.
    Bai X, Wan C, Zhang Y, Zhai Y (2011) Carbon 49(5):1608. doi: 10.1016/j.carbon.2010.12.043 CrossRefGoogle Scholar
  34. 34.
    Xu J, Hu Y, Song L, Wang Q, Fan W, Chen Z (2002) Carbon 40(3):450. doi: 10.1016/s0008-6223(01)00134-8 CrossRefGoogle Scholar
  35. 35.
    Gu F, Zhang ZZ, Liu WM, Su FH, Zhang HJ (2008) J Appl Polym Sci 110(3):1771. doi: 10.1002/app.28124 CrossRefGoogle Scholar
  36. 36.
    Lai SQ, Li TS, Liu XJ, Lv RG (2004) Macromol Mater Eng 289(10):916. doi: 10.1002/mame.200400140 CrossRefGoogle Scholar
  37. 37.
    Buckley DH, Brainard WA (1975) Carbon 13(6):501. doi: 10.1016/0008-6223(75)90052-4 CrossRefGoogle Scholar
  38. 38.
    Xu D, Karger-Kocsis J (2010) J Mater Sci 45(5):1293. doi: 10.1007/s10853-009-4081-8 CrossRefGoogle Scholar
  39. 39.
    Kaneko D, Oshikawa M, Yamaguchi T, Gong JP, Doi M (2007) J Phys Soc Jpn 76 (4). doi: 10.1143/jpsj.76.043601
  40. 40.
    Bahadur S (2000) Wear 245(1–2):92. doi: 10.1016/s0043-1648(00)00469-5 CrossRefGoogle Scholar
  41. 41.
    Ziemianski K, Pietrasik R (1979) Wear 56(1):123. doi: 10.1016/0043-1648(79)90011-5 CrossRefGoogle Scholar
  42. 42.
    Srinath G, Gnanamoorthy R (2007) Compos Sci Technol 67(3–4):399. doi: 10.1016/j.compscitech.2006.09.004 CrossRefGoogle Scholar
  43. 43.
    Jia JH, Chen JM, Zhou HD, Wang JB, Zhou H (2004) Tribol Int 37(5):423. doi: 10.1016/j.triboint.2003.12.013 CrossRefGoogle Scholar
  44. 44.
    Meng H, Sui GX, Xie GY, Yang R (2009) Compos Sci Technol 69(5):606. doi: 10.1016/j.compscitech.2008.12.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yuqi Li
    • 1
    • 2
  • Qihua Wang
    • 1
  • Tingmei Wang
    • 1
  • Guangqin Pan
    • 3
  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Lanzhou Institute of Chemical Industry, Research Institute of Lanzhou Petrochemical CompanyPetroChinaLanzhouPeople’s Republic of China

Personalised recommendations