Journal of Materials Science

, Volume 47, Issue 2, pp 702–710 | Cite as

Interactions at fiber/matrix interface in short fiber reinforced amorphous thermoplastic composites modified with micro- and nano-fillers

  • Nihat Ali Isitman
  • Muratahan Aykol
  • Cevdet Kaynak


This study aims at systematically extracting fiber/matrix interfacial strength in short-glass fiber-reinforced polymer composites using an experimental micromechanics approach which employs mechanical properties and residual fiber length distributions to derive the apparent interfacial shear strength. We started from neat high-impact polystyrene matrix short-glass fiber-reinforced composites (HIPS/GF) with varying fiber loading and proceeded toward HIPS/GF hybrid composites containing micro- and nano-fillers where complex fiber/matrix interfacial interactions exist. It was found that apparent interfacial shear strength does not vary with fiber content, while the presence of fillers with different length-scales alters fiber/matrix interactions depending on their influence on physical properties of the polymer matrix, particularly in the vicinity of reinforcing fiber surfaces.


Fiber Content Fiber Length Fiber Volume Fraction Fiber Loading Fiber Orientation Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Desaeger M, Verpoest I (1993) Compos Sci Technol 48:215CrossRefGoogle Scholar
  2. 2.
    Marotzke C (1993) Compos Interf 1:153Google Scholar
  3. 3.
    Piggott MR (1991) Compos Sci Technol 42:57CrossRefGoogle Scholar
  4. 4.
    Piggott MR (1997) Compos Sci Technol 57:965CrossRefGoogle Scholar
  5. 5.
    Piggott MR, Dai SR (1991) Polym Eng Sci 31:1246CrossRefGoogle Scholar
  6. 6.
    Piggott MR, Reboredo MM (1995) Compos Interf 2:457Google Scholar
  7. 7.
    Pisanova E, Zhandarov S, Mader E, Ahmad I, Young RJ (2001) Compos Pt A-Appl Sci Manuf 32:435CrossRefGoogle Scholar
  8. 8.
    Thomason JL (2001) Compos Sci Technol 61:2007CrossRefGoogle Scholar
  9. 9.
    Thomason JL (2002) Compos Pt A-Appl Sci Manuf 33:331CrossRefGoogle Scholar
  10. 10.
    Thomason JL (2002) Compos Sci Technol 62:1455CrossRefGoogle Scholar
  11. 11.
    Thomason JL (2002) Compos Pt A-Appl Sci Manuf 33:1283CrossRefGoogle Scholar
  12. 12.
    Isitman NA, Aykol M (2010) Compos Interfaces 17:49CrossRefGoogle Scholar
  13. 13.
    Gunduz HO, Isitman NA, Aykol M, Kaynak C (2009) Polym-Plast Technol Eng 48:1046CrossRefGoogle Scholar
  14. 14.
    Isitman NA, Aykol M, Kaynak C (2010) Compos Struct 92:2181CrossRefGoogle Scholar
  15. 15.
    Isitman NA, Aykol M, Ozkoc G, Bayram G, Kaynak C (2010) Polym Compos 31:392Google Scholar
  16. 16.
    Thomason JL (2006) Polym Compos 27:552CrossRefGoogle Scholar
  17. 17.
    Thomason JL (2007) Compos Pt A-Appl Sci Manuf 38:210CrossRefGoogle Scholar
  18. 18.
    Thomason JL (2008) Compos Pt A-Appl Sci Manuf 39:1618CrossRefGoogle Scholar
  19. 19.
    Zhao CS, Huang FL, Xiong WC, Wang YZ (2008) Polym Degrad Stab 93:1188CrossRefGoogle Scholar
  20. 20.
    Isitman NA, Gunduz HO, Kaynak C (2010) J Fire Sci 28:87CrossRefGoogle Scholar
  21. 21.
    Kaynak C, Gunduz HO, Isitman NA (2010) J Nanosci Nanotechnol 10:7374CrossRefGoogle Scholar
  22. 22.
    Yoo Y, Spencer MW, Paul DR (2011) Polymer 52:180CrossRefGoogle Scholar
  23. 23.
    Vlasveld DPN, Parlevliet PP, Bersee HEN, Picken SJ (2005) Compos Pt A-Appl Sci Manuf 36:1Google Scholar
  24. 24.
    Ramani K, Bank D, Kraemer N (1995) Polym Compos 16:258CrossRefGoogle Scholar
  25. 25.
    Vonturkovich R, Erwin L (1988) Polym Eng Sci 23:743CrossRefGoogle Scholar
  26. 26.
    Wolf HJ (1994) Polym Compos 15:375CrossRefGoogle Scholar
  27. 27.
    Aykol M, Isitman NA, Firlar E, Kaynak C (2008) Polym Compos 29:644CrossRefGoogle Scholar
  28. 28.
    Bader MG, Bowyer WH (1972) J Phys D-Appl Phys 5:2215CrossRefGoogle Scholar
  29. 29.
    Bowyer WH, Bader MG (1972) J Mater Sci 7:1315. doi: 10.1007/BF00550698 CrossRefGoogle Scholar
  30. 30.
    Fu SY, Yue CY, Hu X, Mai YW (2001) J Mater Sci 20:31. doi: 10.1023/A:1006750328386 Google Scholar
  31. 31.
    Chin WK, Liu HT, Lee YD (1988) Polym Compos 9:27CrossRefGoogle Scholar
  32. 32.
    Fu SY, Mai YW, Ching ECY, Li RKY (2002) Compos Pt A-Appl Sci Manuf 33:1549CrossRefGoogle Scholar
  33. 33.
    Ulrych F, Sova M, Vokrouhlecky J, Turcic B (1993) Polym Compos 14:229CrossRefGoogle Scholar
  34. 34.
    Fu SY, Lauke B, Li RKY, Mai YW (2006) Compos Pt B-Eng 37:182CrossRefGoogle Scholar
  35. 35.
    Ozkoc G, Bayram G, Bayramli E (2005) Polym Compos 26:745CrossRefGoogle Scholar
  36. 36.
    Fu SY, Lauke B (1998) Compos Pt A-Appl Sci Manuf 29:631CrossRefGoogle Scholar
  37. 37.
    Curtis PT, Bader MG, Bailey JE (1978) J Mater Sci 13:377. doi: 10.1007/BF00647783 CrossRefGoogle Scholar
  38. 38.
    Uddin F (2008) Metall Mater Trans A 39:2804CrossRefGoogle Scholar
  39. 39.
    Yoon PJ, Fornes TD, Paul DR (2002) Polymer 43:6727CrossRefGoogle Scholar
  40. 40.
    Kim DH, Fasulo PD, Rodgers WR, Paul DR (2008) Polymer 49:2492CrossRefGoogle Scholar
  41. 41.
    Utracki LA (2009) Eur Polym J 45:1891CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nihat Ali Isitman
    • 1
  • Muratahan Aykol
    • 1
  • Cevdet Kaynak
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations