Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7169–7176 | Cite as

Crystallization of (Fe, Mn)-based nanoparticles in sodium-silicate glasses

  • Ruzha HarizanovaEmail author
  • Ivailo Gugov
  • Christian Rüssel
  • Dragomir Tatchev
  • Vikram Singh Raghuwanshi
  • Armin Hoell
Size Dependent Effects

Abstract

In this investigation, glasses from the system Na2O/MnO/SiO2/Fe2O3 are prepared using a conventional glass-melting technique. During annealing the glass, a nanocrystalline (Fe, Mn)-based spinel phase is precipitated. The phase composition and microstructure of the formed glass–ceramics are studied using X-ray diffraction and electron microscopy. Anomalous small-angle X-ray scattering experiment is used to gather information on the size, composition and element distribution for the precipitated (Fe, Mn)-based nanocrystals. The sizes of the formed spinel crystals, as determined by scanning electron microscopy and anomalous X-ray scattering, are in the range from 12 to 50 nm for annealing temperatures in the range from 550 to 700 °C. Annealing for a longer period of time at temperatures ≥600 °C results in the formation of a second crystalline phase, NaFe(SiO3)2 (aegirine). The ASAXS data show the formation of core–shell structure for the (Fe, Mn)-based crystals with core consisting mostly of iron oxide and a shell, depleted of Fe and Mn. The growth of the spinel crystals is assumed to be kinetically self-constrained.

Keywords

Glass Matrix Spinel Phase Oxide Glass MnFe2O4 Aegirine 

Notes

Acknowledgements

This study was partially supported by contract 10-760/2010 of the University of Chemical Technology and Metallurgy. Further, we acknowledge the Helmholtz Zentrum Berlin—Electron storage ring BESSY II—for provision of synchrotron radiation at 7T-MPW-SAXS beamline. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 226716.

References

  1. 1.
    Karamanov A, Pelino M (2001) J Non-Cryst Solids 281:139CrossRefGoogle Scholar
  2. 2.
    Romero M, Rincon JM (1999) J Am Ceram Soc 82:1313CrossRefGoogle Scholar
  3. 3.
    Ehrt D, Reiß H, Vogel W (1976) Silikattechnik 27:304Google Scholar
  4. 4.
    Adler D (1985) J Non-Cryst Solids 73:205CrossRefGoogle Scholar
  5. 5.
    Owen AE, Spear WE (1976) Phys Chem Glasses 17:174Google Scholar
  6. 6.
    Mott NF (1968) J Non-Cryst Solids 1:1CrossRefGoogle Scholar
  7. 7.
    Mackenzie JD (1970) J Non-Cryst Solids 2:16CrossRefGoogle Scholar
  8. 8.
    Klinger MI (1968) Rep Prog Phys 31:225CrossRefGoogle Scholar
  9. 9.
    Schmidt AP (1970) J Appl Phys 39:3140CrossRefGoogle Scholar
  10. 10.
    Murawski L, Chung CH, Mackenzie JD (1979) J Non-Cryst Solids 32:91CrossRefGoogle Scholar
  11. 11.
    Mackenzie JD (1964) J Am Ceram Soc 47:211CrossRefGoogle Scholar
  12. 12.
    Mackenzie JD (1964) In: Mackenzie JD (ed) Modern aspects of the vitreous state, vol 3, Butterworths, LondonGoogle Scholar
  13. 13.
    Trap HJL, Stevels JM (1963) Phys Chem Glasses 4:193Google Scholar
  14. 14.
    Anderson RA, MacCrone RK (1974) J Non-Cryst Solids 14:112CrossRefGoogle Scholar
  15. 15.
    Allersma J, Mackenzie JD (1967) J Chem Phys 47:1406CrossRefGoogle Scholar
  16. 16.
    Woltz S, Hiergeist R, Görnert P, Rüssel C (2006) J Magn Magn Mater 298:7CrossRefGoogle Scholar
  17. 17.
    Woltz S, Rüssel C (2004) J Non-Cryst Solids 337:226CrossRefGoogle Scholar
  18. 18.
    Qiu HH, Kudo M, Sakata H (1997) Mater Chem Phys 51:233CrossRefGoogle Scholar
  19. 19.
    Qiu HH, Mori H, Sakata H, Hirayama T (1995) J Ceram Soc Jpn 103:32CrossRefGoogle Scholar
  20. 20.
    Roy S, Chakravorty D (1994) J Mater Res 9:2314CrossRefGoogle Scholar
  21. 21.
    Odenbach S (2004) J Phys 16:1135Google Scholar
  22. 22.
    Zhou GY et al (2004) Smart Mater Struct 13:309CrossRefGoogle Scholar
  23. 23.
    Sakai Y et al (1995) J Ferment Bioeng 80:300CrossRefGoogle Scholar
  24. 24.
    Aytur T et al (2006) J Immunol Methods 314:21CrossRefGoogle Scholar
  25. 25.
    Zhang ZJ et al (1998) J Am Chem Soc 120:1800CrossRefGoogle Scholar
  26. 26.
    Wang X, Li Y (2007) Chem Commun. 2901–2910. doi: https://doi.org/10.1039/b700183e
  27. 27.
    Si H et al (2008) J Colloid Interface Sci 327:466CrossRefGoogle Scholar
  28. 28.
    Shi W, Chopra N (2010) J Nanopart Res. doi: https://doi.org/10.1007/s11051-010-0086-0 CrossRefGoogle Scholar
  29. 29.
    Herranz T et al (2006) Chem Mater 18:2364CrossRefGoogle Scholar
  30. 30.
    Harizanova R, Völksch G, Rüssel C (2010) J Mater Sci 45:1350. doi: https://doi.org/10.1007/s10853-009-4090-7 CrossRefGoogle Scholar
  31. 31.
    Harizanova R, Völksch G, Rüssel C (2010) Mater Res Bull 46: 81–86. doi: https://doi.org/10.1016/j.materresbull.2010.09.036 CrossRefGoogle Scholar
  32. 32.
    Völksch G et al (2004) Glastech Ber Glass Sci Technol 77C:438Google Scholar
  33. 33.
    Harizanova R, Keding R, Rüssel C (2008) J Non-Cryst Solids 354:65CrossRefGoogle Scholar
  34. 34.
    Harizanova R et al (2008) Eur J Glass Sci Technol B 49:177Google Scholar
  35. 35.
    Hoell A et al. German patent: DE 10 2006 029 449Google Scholar
  36. 36.
    Tatchev D (2008) Phil Mag 88:1751CrossRefGoogle Scholar
  37. 37.
    Haas S et al (2010) Phys Rev B 81: 184207Google Scholar
  38. 38.
    Tatchev D (2010) J Appl Cryst 43:8CrossRefGoogle Scholar
  39. 39.
    Simon J-P (2007) J Appl Crystallogr 40: S1CrossRefGoogle Scholar
  40. 40.
    Lembke U et al (1997) J Appl Crystallogr 30:1056CrossRefGoogle Scholar
  41. 41.
    Lembke U, Kranold R (1995) Nucl Instrum Methods Phys Res B 97:190CrossRefGoogle Scholar
  42. 42.
    Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  43. 43.
    Goerigk G et al (2003) J Appl Crystallogr 36:425CrossRefGoogle Scholar
  44. 44.
    Hoell A et al (2001) Scr Mater 44:2335CrossRefGoogle Scholar
  45. 45.
    Haas S et al (2008) ECS Trans 6:127CrossRefGoogle Scholar
  46. 46.
    Zehl G et al (2007) Angew Chem Int Ed 46:7311CrossRefGoogle Scholar
  47. 47.
    Cromer D, Liebermann D (1970) J Chem Phys 53:1891CrossRefGoogle Scholar
  48. 48.
    Lembke U et al (1999) J Appl Phys 85:2279CrossRefGoogle Scholar
  49. 49.
    Rüssel C, Wiedenroth A (2004) Chem Geol 213:125CrossRefGoogle Scholar
  50. 50.
    Levy RA, Lupis CH, Flinn PA (1976) Phys Chem Glasses 17:94Google Scholar
  51. 51.
    Duffy A (1999) Phys Chem Glasses 40:54Google Scholar
  52. 52.
    Wiedenroth A, Rüssel C (2004) J Non-Cryst Solids 347:180CrossRefGoogle Scholar
  53. 53.
    Wiedenroth A, Rüssel C (2002) J Non-Cryst Solids 297:173CrossRefGoogle Scholar
  54. 54.
    Gravanis G, Rüssel C (1989) Glastech Ber 62:345Google Scholar
  55. 55.
    Bingham PA et al (1999) J Non-Cryst Solids 253:203CrossRefGoogle Scholar
  56. 56.
    Duffy JA, Ingram MD (1976) J Non-Cryst Solids 21:373CrossRefGoogle Scholar
  57. 57.
    Pye LD, Montenero A, Joseph I (eds) (2005) Properties of glass-forming melts. Taylor & Francis, Boca RatonGoogle Scholar
  58. 58.
    Kido L, Müller M, Rüssel C (2005) Chem Mater 17:3929CrossRefGoogle Scholar
  59. 59.
    Kido L, Müller M, Rüssel C (2005) J Non-Cryst Solids 351:523CrossRefGoogle Scholar
  60. 60.
    Rüssel C (2005) Chem Mater 17:5843CrossRefGoogle Scholar
  61. 61.
    Bocker C, Rüssel C (2009) J Eur Ceram Soc 29:1221CrossRefGoogle Scholar
  62. 62.
    Bhattacharya S, Bocker C, Heil T, Jinschek JR, Höche T, Rüssel C, Kohl H (2009) Nano Lett 9:2493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ruzha Harizanova
    • 1
    Email author
  • Ivailo Gugov
    • 1
  • Christian Rüssel
    • 2
  • Dragomir Tatchev
    • 3
  • Vikram Singh Raghuwanshi
    • 4
  • Armin Hoell
    • 4
  1. 1.Department of PhysicsUniversity of Chemical Technology and MetallurgySofiaBulgaria
  2. 2.Otto-Schott-InstitutJena UniversityJenaGermany
  3. 3.Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Institute of Applied MaterialsHelmholtz Zentrum BerlinBerlinGermany

Personalised recommendations