Journal of Materials Science

, Volume 47, Issue 1, pp 486–492 | Cite as

Glass reactive sintering as an alternative route for the synthesis of NZP glass–ceramics

  • Sébastien Chenu
  • Ronan Lebullenger
  • Patricia Bénard-Rocherullé
  • Guillaume Calvez
  • Olivier Guillou
  • Jean RocherulléEmail author
  • Abdessamad Kidari
  • Mickael J. Pomeroy
  • Stuart Hampshire


The NZP-type crystal structure allows a large number of ionic substitutions which leads to ceramics with adjustable thermal expansion properties or interesting ionic conductivity. However, NZP is difficult to fabricate into monoliths because it requires both high temperatures and long sintering times. An alternative low temperature route to obtain a tungsten (IV) and tin (IV) containing NZP crystalline phase uses a process of glass reactive sintering of a phosphate glass. Using a microwave oven, a glass with the appropriate composition in the NaPO3–Sn(II)O–W(VI)O3 ternary diagram is prepared by a conventional melting and casting technique. After crushing, the glass powder is pressed at room temperature. The green pellet is cured during various times at temperatures where glass reactive sintering takes place. From XRD and DTA experiments, we have shown that different parameters influence the achievement of NZP phase. Consequently, specific conditions, such as (i) initial glass composition, (ii) equimolar quantities of SnO and WO3, (iii) glass particle size lower than 100 μm, and (iv) curing conducted under air, are required to obtain a glass–ceramic with a single crystalline phase with the NZP-type crystal structure.


Glass Composition Tungsten Oxide NaPO3 Parent Glass ICDD PDF2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hagman LO, Kierkegaard P (1968) Acta Chem Scand 22:1822CrossRefGoogle Scholar
  2. 2.
    Subba Rao GV, Varadaraju UV, Thomas KA, Sivasankar B (1987) J Solid State Chem 70:101CrossRefGoogle Scholar
  3. 3.
    Leclaire A, Borel MM, Grandin A, Raveau B (1989) Acta Cryst C 45:699CrossRefGoogle Scholar
  4. 4.
    Goodenough JB, Hong HY-P, Kafalas JA (1976) Mater Res Bull 11:203CrossRefGoogle Scholar
  5. 5.
    Oikonomou P, Dedeloudis C, Stournaras CJ, Ftikos C (2007) J Eur Ceram Soc 27:1253CrossRefGoogle Scholar
  6. 6.
    Breval E, McKinstry HA, Agrawal DK (2000) J Mater Sci 35:3359. doi: 10.1023/A:1004828917908 CrossRefGoogle Scholar
  7. 7.
    Buvaneswari G, Varadaraju UV (2000) Mater Res Bull 35:1313CrossRefGoogle Scholar
  8. 8.
    Roy R, Vance ER, Alamo J (1982) Mater Res Bull 17:585CrossRefGoogle Scholar
  9. 9.
    Yamamoto K, Kasuga T, Abe Y (1997) J Am Ceram Soc 80:822CrossRefGoogle Scholar
  10. 10.
    Zhou M, Ahmad A (2007) Sensors Actuators B Chem 122:419CrossRefGoogle Scholar
  11. 11.
    Lisdat F, Miura N, Yamazoe N (1996) Sensors Actuators B Chem 30:195CrossRefGoogle Scholar
  12. 12.
    Rodrigo JL, Alamo J (1991) Mater Res Bull 26:475CrossRefGoogle Scholar
  13. 13.
    Breval E, Harshé G, Agrawal DK, Limaye SY (1995) J Mater Sci Lett 14:728Google Scholar
  14. 14.
    Vaidhyanathan B, Agrawal DK, Roy R (2004) J Am Ceram Soc 87:834CrossRefGoogle Scholar
  15. 15.
    Vaidhyanathan B, Ganguli M, Rao KJ (1994) J Solid State Chem 113:448CrossRefGoogle Scholar
  16. 16.
    Ghussn L, Martinelli JR (2004) J Mater Sci 39:1371. doi: 10.1023/B:JMSC.0000013899.75724.e1 CrossRefGoogle Scholar
  17. 17.
    Chenu S, Lebullenger R, Rocherullé J (2010) J Mater Sci 45:6505. doi: 10.1007/s10853-010-4739-2 CrossRefGoogle Scholar
  18. 18.
    Shannon RD (1976) Acta Cryst A32:751Google Scholar
  19. 19.
    Chenu S, Rocherullé J, Lebullenger R, Merdrignac O, Cheviré F, Tessier F, Oudadesse H (2010) J Non Cryst Solid 356:87CrossRefGoogle Scholar
  20. 20.
    Muñoz F, Pascual L, Durán A, Rocherullé J, Marchand R (2006) J Eur Ceram Soc 26:1455CrossRefGoogle Scholar
  21. 21.
    Ray CS, Day DE (1990) J Am Ceram Soc 73:439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sébastien Chenu
    • 1
  • Ronan Lebullenger
    • 1
  • Patricia Bénard-Rocherullé
    • 1
  • Guillaume Calvez
    • 1
  • Olivier Guillou
    • 1
  • Jean Rocherullé
    • 1
    Email author
  • Abdessamad Kidari
    • 2
    • 3
  • Mickael J. Pomeroy
    • 2
  • Stuart Hampshire
    • 2
  1. 1.UMR CNRS 6226 Sciences Chimiques de RennesUniversité de Rennes 1RennesFrance
  2. 2.Materials and Surface Science InstituteUniversity of LimerickLimerickIreland
  3. 3.Now at CEA, DEN, DTCD, SECM, LDMCBagnols-sur-Cèze CedexFrance

Personalised recommendations