Journal of Materials Science

, Volume 47, Issue 1, pp 473–478 | Cite as

Continuous high-pressure torsion using wires

  • Kaveh EdalatiEmail author
  • Seungwon Lee
  • Zenji Horita


A newly developed severe plastic deformation method, continuous high-pressure torsion (CHPT), was modified for continuous processing of metallic wires. In this study, using the CHPT, wires of high-purity aluminum (99.99%) and copper (99.999%) with diameters of 2 mm and total lengths of 100 mm were successfully processed by employing the same features as conventional high-pressure torsion (HPT) technique. The results of hardness measurements, 35 Hv for Al and 116 Hv for Cu, after CHPT at an imposed equivalent strain of ~13 were consistent with those of conventional HPT using disk and ring specimens, as well as with those of CHPT using sheet specimens. Transmission electron microscopy (TEM) demonstrated that the microstructural elements are elongated in the shear direction after CHPT. The average grain size reaches the steady-state level, ~1.3 μm, in Al, but the microstructure is at the non-steady state in Cu with subgrain sizes in the range of 0.3–4 μm.


Severe Plastic Deformation Equivalent Strain SAED Pattern Subgrain Size Sheet Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (KE) would like to thank the Islamic Development Bank (IDB) for a doctoral scholarship and Japan Society for Promotion of Science (JSPS) for a postdoctoral scholarship. This study was supported in part by the Light Metals Educational Foundation of Japan, in part by a Grant-in-Aid for Scientific Research from the MEXT, Japan, in Innovative Areas: “Bulk Nanostructured Metals,” and in part by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (P&P).


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) J Oper Manage 58(4):33Google Scholar
  4. 4.
    Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893CrossRefGoogle Scholar
  5. 5.
    Bridgman PW (1935) Phys Rev 48:825CrossRefGoogle Scholar
  6. 6.
    Erbel S (1979) Met Technol 6:482Google Scholar
  7. 7.
    Harai Y, Ito Y, Horita Z (2008) Scripta Mater 58:469CrossRefGoogle Scholar
  8. 8.
    Bonarski BJ, Schafler E, Mingler B, Skrotzki W, Mikulowski B, Zehetbauer MJ (2008) J Mater Sci 43:753. doi: 10.1007/s10853-008-2794-8 CrossRefGoogle Scholar
  9. 9.
    Kawasaki M, Ahn B, Langdon TG (2010) J Mater Sci 45:4583. doi: 10.1007/s10853-010-4420-9 CrossRefGoogle Scholar
  10. 10.
    Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:47CrossRefGoogle Scholar
  11. 11.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753CrossRefGoogle Scholar
  12. 12.
    Hebesberger T, Stuwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393CrossRefGoogle Scholar
  13. 13.
    Perez-Prado MT, Gimazov AA, Ruano OA, Kassner ME, Zhilyaev AP (2008) Scripta Mater 58:219CrossRefGoogle Scholar
  14. 14.
    Wetscher F, Vorhauer A, Pippan R (2005) Mater Sci Eng A 410–411:213Google Scholar
  15. 15.
    Kilmametov AR, Khristoforova AV, Wilde G, Valiev RZ (2007) Z Kristallogr Suppl 26:339CrossRefGoogle Scholar
  16. 16.
    Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592CrossRefGoogle Scholar
  17. 17.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russian Metall 1:99Google Scholar
  18. 18.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  19. 19.
    Valiev RZ, Langdon TG (2011) Metall Mater Trans A 528:6140–6148Google Scholar
  20. 20.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317CrossRefGoogle Scholar
  21. 21.
    Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A 524:143CrossRefGoogle Scholar
  22. 22.
    Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mater Res 14:4044CrossRefGoogle Scholar
  23. 23.
    Edalati K, Horita Z (2010) Scripta Mater 63:174CrossRefGoogle Scholar
  24. 24.
    Rentenberger C, Waitz T, Karnthaler HP (2007) Mater Sci Eng A 462:283CrossRefGoogle Scholar
  25. 25.
    Edalati K, Horita Z (2011) Scripta Mater 64:161CrossRefGoogle Scholar
  26. 26.
    Pippan R, Scheriau S, Hohenwarter A, Hafok M (2008) Mater Sci Forum 584–586:6Google Scholar
  27. 27.
    Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Annu Rev Mater Res 40:319CrossRefGoogle Scholar
  28. 28.
    Edalati K, Horita Z (2009) Mater Trans 50:92CrossRefGoogle Scholar
  29. 29.
    Edalati K, Horita Z (2010) J Mater Sci 45:4578. doi: 10.1007/s10853-010-4381-z CrossRefGoogle Scholar
  30. 30.
    Edalati K, Horita Z, Langdon TG (2009) Scripta Mater 60:9CrossRefGoogle Scholar
  31. 31.
    Edalati K, Fujioka T, Horita Z (2009) Mater Trans 50:44CrossRefGoogle Scholar
  32. 32.
    Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203CrossRefGoogle Scholar
  33. 33.
    Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308CrossRefGoogle Scholar
  34. 34.
    Edalati K, Ito Y, Suehiro K, Horita Z (2009) Int J Mater Res 100:1668CrossRefGoogle Scholar
  35. 35.
    Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A 497:168CrossRefGoogle Scholar
  36. 36.
    Lowe TC (2011) Mater Sci Forum 667–669:1145Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringKyushu UniversityFukuokaJapan
  2. 2.WPI, International Institute for Carbon–Neutral Energy Research (I2CNER), Kyushu UniversityFukuokaJapan

Personalised recommendations