Journal of Materials Science

, Volume 47, Issue 1, pp 374–381 | Cite as

Radiative exciton recombination dynamics in QD-tagged polystyrene microspheres

  • Gospodinka Gicheva
  • Anna-Maria Panniello
  • Michela Corricelli
  • Angela Agostiano
  • Ceco Dushkin
  • Georgi YordanovEmail author


Fluorescent polystyrene microspheres are prepared by the incorporation of fluorescent CdSe/CdS core/shell semiconductor nanocrystals (quantum dots, QDs) using the emulsification/solvent evaporation method. The radiative exciton recombination dynamics is investigated by nanosecond time-resolved fluorescence spectroscopy at ambient conditions. The time constants of fast and slow fluorescence decay in QDs, dispersed in toluene, were 3.5 and 17.8 ns, respectively. For the QD-tagged microspheres, the time constants of fast and slow processes were ~2–3 and ~11–12 ns, respectively, and did not depend significantly on the QD-content of the microspheres. The fast decay component could be attributed to the recombination of delocalized exciton in the internal core states, and the slow component was attributed to the localized exciton in the surface states. It was found that the ratio of amplitudes of the fast and slow processes also changed after incorporation of QDs in microspheres. The observed differences in fluorescence decay between non-entrapped QDs and QD-tagged microspheres were probably due to energy transfer between the nanocrystals, which were in close proximity inside the microspheres. The obtained fluorescent QD-tagged microspheres are characterized by the other methods as well, which makes them of value for various applications as optical materials.


Fluorescence Lifetime Fluorescence Decay Polymeric Microsphere Polystyrene Microsphere Time Correlate Single Photon Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to dedicate this work to the memory of Dr. Ceco Dushkin, a coauthor of this article, who largely supported this research. The authors thank COST Action D43 (grant COST-STSM-D43-03506) and projects VUH-09/05 and UNION (DCVP 02/2 – 2009) of the National Science Fund of Bulgaria. The authors also thank Andrea Petrella, Politecnico di Bari, for the SEM images.


  1. 1.
    Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, Sundaresan G, Wu A, Gambhir S, Weiss S (2005) Science 307:538CrossRefGoogle Scholar
  2. 2.
    Pinaud F, Michalet X, Bentolila L, Tsay J, Doosel S, Li J, Iyer G, Weiss S (2006) Biomaterials 27:1679CrossRefGoogle Scholar
  3. 3.
    Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian A (2007) Biomaterials 28:4717CrossRefGoogle Scholar
  4. 4.
    Chan W, Maxwell D, Gao X, Bailey R, Han M, Nie S (2002) Curr Opin Biotechnol 13:40CrossRefGoogle Scholar
  5. 5.
    Hezinger A, Teßmar J, Gopferich A (2008) Eur J Pharm Biopharm 68:138CrossRefGoogle Scholar
  6. 6.
    Han M, Gao X, Su J, Nie S (2001) Nature Biotechnol 19:631CrossRefGoogle Scholar
  7. 7.
    Ma Q, Wang X, Li Y, Shi Y, Su X (2007) Talanta 72:1446CrossRefGoogle Scholar
  8. 8.
    Xu H, Sha M, Wong E, Uphoff J, Xu Y, Treadway J, Truong A, O’Bren E, Asquith S, Stubbins M, Spurr N, Lai E, Mahoney W (2003) Nucleic Acids Res 31(8):e43CrossRefGoogle Scholar
  9. 9.
    Stsiapura V, Sukhanova A, Artemyev M, Pluot M, Cohen J, Baranov A, Oleinikov V, Nabiev I (2004) Anal Biochem 334:257CrossRefGoogle Scholar
  10. 10.
    Bradley M, Bruno N, Vincent B (2005) Langmuir 21:2750CrossRefGoogle Scholar
  11. 11.
    Gao X, Nie S (2004) Anal Chem 76:2406CrossRefGoogle Scholar
  12. 12.
    Wang D, Rogach A, Caruso F (2002) Nano Lett 2:857CrossRefGoogle Scholar
  13. 13.
    Graponik N, Radtchenko I, Gerstenberger M, Fedutik Y, Sukhorukov G, Rogach A (2003) Nano Lett 3:369CrossRefGoogle Scholar
  14. 14.
    Müller F, Götzinger S, Gaponik N, Weller H, Mlynek J, Benson O (2004) J Phys Chem B 108:14527CrossRefGoogle Scholar
  15. 15.
    O’Brien P, Cummins S, Darcy D, Dearden A, Masala O, Pickett N, Ryley S (2003) Chem Commun 2532Google Scholar
  16. 16.
    Yang X, Zhang Y (2004) Langmuir 20:6071CrossRefGoogle Scholar
  17. 17.
    Sheng W, Kim S, Lee J, Kim S, Jensen K, Bawendi M (2006) Langmuir 22:3782CrossRefGoogle Scholar
  18. 18.
    Yin W, Liu H, Yates M, Du H, Jiang F, Guo L, Krauss T (2007) Chem Mater 19:2930CrossRefGoogle Scholar
  19. 19.
    Wang C, Wang L, Yang W (2009) J Colloid Interface Sci 333:749CrossRefGoogle Scholar
  20. 20.
    Ma Q, Song T, Yuan P, Wang C, Su X (2008) Colloids Surf B 64:248CrossRefGoogle Scholar
  21. 21.
    Sun L, Yu X, Sun M, Wang H, Xu S, Dixon J, Wang Y, Li Y, Yang Q, Xu X (2011) J Colloid Interface Sci 358:73CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Chen W, Peng C, Liu L, Xue F, Zhu S, Kuang H, Xu C (2010) J Colloid Interface Sci 352:337CrossRefGoogle Scholar
  23. 23.
    Wu F, Zhang J, Kho R, Mehra R (2000) Chem Phys Lett 330:237CrossRefGoogle Scholar
  24. 24.
    Shu G, Lee W, Shu I, Shen J, Lin C, Chang W, Ruaan R, Chou W (2005) IEEE Trans Nanotechnol 4:5–10CrossRefGoogle Scholar
  25. 25.
    Schlegel G, Bohnenberger J, Potapova I, Mews A (2002) Phys Rev Lett 88:137401CrossRefGoogle Scholar
  26. 26.
    Javier A, Magana D, Jennings T, Strouse G (2003) Appl Phys Lett 83:1423CrossRefGoogle Scholar
  27. 27.
    Dahan M, Laurence T, Pinaud F, Chemla D, Alivisatos A, Sauer M, Weiss S (2001) Optics Lett 26:825–827CrossRefGoogle Scholar
  28. 28.
    Yordanov G, Yoshimura H, Dushkin C (2008) Colloid Polymer Sci 286:1097CrossRefGoogle Scholar
  29. 29.
    Yordanov G, Gicheva G, Dushkin C (2009) Mater Chem Phys 113:507CrossRefGoogle Scholar
  30. 30.
    Schliehe C, Schliehe C, Thiry M, Tromsdorf U, Hentschel J, Weller H, Groettrup M (2011) J Control Release. doi: 10.1016/j.jconrel.2011.01.005 (in press)
  31. 31.
    Kim J, Cho K, Tran T, Nurunnabi M, Moon T, Hong S, Lee Y (2011) J Colloid Interf Sci 353:363CrossRefGoogle Scholar
  32. 32.
    Zhang B, Liang X, Hao L, Cheng J, Gong X, Liu X, Ma G, Chang J (2009) J Photochem Photobiol B 94:45CrossRefGoogle Scholar
  33. 33.
    Yuan C, Chou W, Chuu D, Chang W, Lin H, Ruaan R (2006) J Med Biol Eng 26:131Google Scholar
  34. 34.
    Kagan C, Murray C, Nirmal M, Bawendi M (1996) Phys Rev Lett 76:1517CrossRefGoogle Scholar
  35. 35.
    Kagan C, Murray C, Bawendi M (1996) Phys Rev B 54:8633CrossRefGoogle Scholar
  36. 36.
    Lunz M, Bradley A (2010) Phys Rev B 81:205316CrossRefGoogle Scholar
  37. 37.
    Kim D, Okahara S, Nakayama M (2008) Phys Rev B 78:153301CrossRefGoogle Scholar
  38. 38.
    Achermann M, Petruska M, Crooker S, Klimov V (2003) J Phys Chem B 107:13782CrossRefGoogle Scholar
  39. 39.
    Wuister S, Koole R, de Mello Donega R, Meijerink A (2005) J Phys Chem B 109:5504CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gospodinka Gicheva
    • 1
    • 2
    • 3
  • Anna-Maria Panniello
    • 2
  • Michela Corricelli
    • 2
  • Angela Agostiano
    • 2
  • Ceco Dushkin
    • 1
  • Georgi Yordanov
    • 1
    Email author
  1. 1.Faculty of ChemistrySofia University “St. Kliment Ohridski”SofiaBulgaria
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of Bari and CNR-IPCF (Bari)BariItaly
  3. 3.Department of ChemistryUniversity of Mining and Geology “St. Ivan Rilski”, Studentski GradSofiaBulgaria

Personalised recommendations