Journal of Materials Science

, Volume 47, Issue 4, pp 1641–1646 | Cite as

Faceting–roughening of twin grain boundaries

  • B. B. Straumal
  • B. Baretzky
  • O. A. Kogtenkova
  • A. S. Gornakova
  • V. G. Sursaeva


The coincidence site lattice (CSL) plays a similar role for grain boundaries (GB) as the crystal lattice plays for free surfaces. The most densely packed CSL is the twin-related CSL, characterized by an inverse density of coincidence sites Σ = 3. Phase diagrams in coordinates “relative temperature T/T m—misorientation angle θ—inclination angle φ” were constructed for the twin GBs in Cu, Al, and Mo having different stacking fault energy γ. At low γ the twin GB remains faceted at all φ values and the number of crystallographically different facets increases with decreasing temperature. With increasing γ asymmetric twin GBs become more and more rough, and fewer facets appear with decreasing temperature. Also, with increasing γ the facets start to degenerate of into the first order rough-to-rough ridges. The behavior of twin GBs in Cu, Al, and Mo is compared with that of twin GBs in Zn.



Authors thank the Russian Foundation for Basic Research (contract 09-03-92481) and Israel Ministry of Science (project 3-5790) and the Program of bilateral cooperation between Russian and Polish Academies of Sciences for the financial support. Authors cordially thank Prof. E. Rabkin, Prof. R. Valiev, Prof. T. Langdon, and Dr. A. Mazilkin for stimulating discussions, Mr. A. Nekrasov for the help with SEM and EPMA measurements.


  1. 1.
    Grimmer H, Bollmann W, Warrington DT (1974) Acta Cryst A 30:197CrossRefGoogle Scholar
  2. 2.
    Sutton AP, Balluffi RW (1987) Acta Metall 35:2177CrossRefGoogle Scholar
  3. 3.
    Rutter JW, Aust (1965) Acta Metall 13:181CrossRefGoogle Scholar
  4. 4.
    Fridman EM, Kopezky CV, Shvindlerman LS (1975) Zt Metallkde 66:533Google Scholar
  5. 5.
    Aristov VY, Kopezky CV, Shvindlerman LS (1977) Scr Metall 11:109CrossRefGoogle Scholar
  6. 6.
    Antonov AV, Kopezky CV, Shvindlerman LS (1971) Phys Metall Metallogr 32:187Google Scholar
  7. 7.
    Aleshin AN, Aristov VY, Bokstein BS et al (1978) Phys Stat Sol A 45:359CrossRefGoogle Scholar
  8. 8.
    Aleshin AN, Bokstein BS, Shvindlerman LS et al (1978) Phys Stat Sol A 45:359CrossRefGoogle Scholar
  9. 9.
    Aleshin AN, Bokstein BS, Shvindlerman LS (1977) Sov Phys Sol State 19:3511Google Scholar
  10. 10.
    Gottstein G, Shvindlerman LS (2009) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press Inc, Boca RatonCrossRefGoogle Scholar
  11. 11.
    Tan TY, Sass SL, Balluffi RW (1975) Phil Mag 31:575CrossRefGoogle Scholar
  12. 12.
    Straumal BB, Shvindlerman LS (1985) Acta Metall 33:1735CrossRefGoogle Scholar
  13. 13.
    Straumal BB, Klinger LM, Shvindlerman LS (1984) Acta Metall 32:1355CrossRefGoogle Scholar
  14. 14.
    Molodov DA, Straumal BB, Shvindlerman LS (1984) Scr Metall 18:207CrossRefGoogle Scholar
  15. 15.
    Aleshin AN, Prokofiev SI, Shvindlerman LS (1985) Scr Metall 19:1135CrossRefGoogle Scholar
  16. 16.
    Hsieh TE, Balluffi RW (1989) Acta Metall 37:2133CrossRefGoogle Scholar
  17. 17.
    Kim MJ, Cho YK, Yoon DY (2004) J Am Ceram Soc 87:455CrossRefGoogle Scholar
  18. 18.
    Rottman C, Wortis M (1984) Phys Rev B 29:328CrossRefGoogle Scholar
  19. 19.
    Straumal BB, Semenov VN, Kogtenkova OA et al (2004) Phys Rev Lett 192:196101CrossRefGoogle Scholar
  20. 20.
    Keshishev KO, Parshin AYa, Babkin AV (1981) Sov Phys JETP 53:362Google Scholar
  21. 21.
    Maksimova EL, Shvindlerman LS, Straumal BB (1988) Acta Metall 36:1573CrossRefGoogle Scholar
  22. 22.
    Maksimova EL, Shvindlerman LS, Straumal BB et al (1989) Acta Metall 37:2855CrossRefGoogle Scholar
  23. 23.
    Maksimova EL, Rabkin EI, Shvindlerman LS et al (1989) Acta Metall 37:1995CrossRefGoogle Scholar
  24. 24.
    Kinoshita Y, Yardley VA, Tsurekawa S (2011) J Mater Sci 46:4261. doi: 10.1007/s10853-010-5241-6 CrossRefGoogle Scholar
  25. 25.
    Kurihara K, Kokawa H, Sato S et al (2011) J Mater Sci 46:4270. doi: 10.1007/s10853-010-5244-3 CrossRefGoogle Scholar
  26. 26.
    Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4827. doi: 10.1007/s10853-010-4589-y CrossRefGoogle Scholar
  27. 27.
    Baretzky B, Friesel M, Petelin A et al (2006) Def Diff Forum 258:397CrossRefGoogle Scholar
  28. 28.
    Duparc OBMH (2011) J Mater Sci 46:4116. doi: 10.1007/s10853-011-5367-1 CrossRefGoogle Scholar
  29. 29.
    Semenov VN, Straumal BB, Glebovsky VG et al (1995) J Cryst Growth 151:180CrossRefGoogle Scholar
  30. 30.
    Schölhammer J, Baretzky B, Gust W et al (2001) Interf Sci 9:43CrossRefGoogle Scholar
  31. 31.
    Straumal BB, Polyakov SA, Mittemeijer EJ (2006) Acta Mater 54:167CrossRefGoogle Scholar
  32. 32.
    Kogtenkova O, Straumal B, Protasova S et al (2005) Zt Metallkd 96:216Google Scholar
  33. 33.
    Straumal BB, Semenov VN, Kogtenkova OA et al (2004) Phys Rev Lett 192:196101CrossRefGoogle Scholar
  34. 34.
    Straumal BB, Sursaeva VG, Polyakov SA (2001) Interface Sci 9:275CrossRefGoogle Scholar
  35. 35.
    Straumal BB, Polyakov SA, Bischoff E et al (2001) Interface Sci 9:287CrossRefGoogle Scholar
  36. 36.
    Straumal B, Polyakov S, Bischoff E et al (2004) Zt Metallkd 95:939Google Scholar
  37. 37.
    Kogtenkova OA, Straumal BB, Protasova SG et al (2005) Def Diff Forum 237:603CrossRefGoogle Scholar
  38. 38.
    Protasova SG, Kogtenkova OA, Straumal BB (2007) Mater Sci Forum 558:949CrossRefGoogle Scholar
  39. 39.
    Gallagher PCJ (1970) Metall Trans 1:2429Google Scholar
  40. 40.
    Chang L-S, Rabkin E, Straumal BB et al (1998) Defect Diff Forum 156:135CrossRefGoogle Scholar
  41. 41.
    Straumal BB, Polyakov SA, Bischoff E et al (2003) Def Diff Forum 216:93CrossRefGoogle Scholar
  42. 42.
    Straumal BB, Polyakov SA, Chang L-S et al (2007) Int J Mater Res (Zt Metallkd) 98:451Google Scholar
  43. 43.
    Gokon N, Kajihara A (2008) Mater Sci Eng A 477:121CrossRefGoogle Scholar
  44. 44.
    Goukon N, Yamada T, Kajihara M (2000) Acta Mater 48:2837CrossRefGoogle Scholar
  45. 45.
    Lojkowski W, Sodervall U, Mayer S (1998) Interface Sci 6:187CrossRefGoogle Scholar
  46. 46.
    Kuhn H, Bäro G, Gleiter H (1979) Acta Metall 27:959CrossRefGoogle Scholar
  47. 47.
    Goodhew PJ, Tan TY, Balluffi RW (1978) Acta Metall 26:557CrossRefGoogle Scholar
  48. 48.
    Wolf U, Ernst F, Muschik T et al (1992) Phil Mag A 66:991CrossRefGoogle Scholar
  49. 49.
    Ernst F, Finnis MW, Hoffmann D et al (1992) Phys Rev Lett 69:620CrossRefGoogle Scholar
  50. 50.
    Hofmann D, Finnis MW (1994) Acta Metall Mater 42:3555CrossRefGoogle Scholar
  51. 51.
    Straumal B, Sursaeva V, Baretzky B (2010) Scr Mater 62:924CrossRefGoogle Scholar
  52. 52.
    Heyraud JC, Metois JJ (1980) Acta Metal 28:1789CrossRefGoogle Scholar
  53. 53.
    Heyraud JC, Metois JJ (1983) Surf Sci 128:334CrossRefGoogle Scholar
  54. 54.
    Mullins WW (1956) Acta Metall 4:421CrossRefGoogle Scholar
  55. 55.
    Dingley DJ, Pond RC (1979) Acta Metall 27:667CrossRefGoogle Scholar
  56. 56.
    Pegel B (1968) Phys Status Solid 28:603CrossRefGoogle Scholar
  57. 57.
    Rybin VV, YuF Titovets, Teplitsky DM, Zolotorevsky NYu (1982) Fiz Metall Metalloved 53:544 (in Russian)Google Scholar
  58. 58.
    Davidson D, den Nijs M (2000) Phys Rev E 59:5029CrossRefGoogle Scholar
  59. 59.
    Davidson D, den Nijs M (2000) Phys Rev Lett 84:326CrossRefGoogle Scholar
  60. 60.
    Wynblatt P, Chatain D (2009) Rev Adv Mater Sci 21:44Google Scholar
  61. 61.
    Chatain D, Ghetta V, Wynblatt P (2004) Interface Sci 12:7CrossRefGoogle Scholar
  62. 62.
    Saka H, Iwata T, Imura T (1978) Phil Mag A 37:273CrossRefGoogle Scholar
  63. 63.
    Shin K, King AH (1991) Phil Mag A 63:1023CrossRefGoogle Scholar
  64. 64.
    Chen F-R, King AH (1988) Acta crystallogr B 43:416CrossRefGoogle Scholar
  65. 65.
    Straumal BB, Gornakova AS, Sursaeva VG (2008) Phil Mag Lett 88:27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
  • B. Baretzky
    • 2
  • O. A. Kogtenkova
    • 1
  • A. S. Gornakova
    • 1
  • V. G. Sursaeva
    • 1
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Karlsruher Institut für TechnologieInstitut für NanotechnologieEggenstein-LeopoldshafenGermany

Personalised recommendations