Journal of Materials Science

, Volume 47, Issue 1, pp 360–367 | Cite as

Deformation-driven formation of equilibrium phases in the Cu–Ni alloys

  • B. B. StraumalEmail author
  • S. G. Protasova
  • A. A. Mazilkin
  • E. Rabkin
  • D. Goll
  • G. Schütz
  • B. Baretzky
  • R. Z. Valiev


The homogeneous coarse-grained (CG) Cu–Ni alloys with nickel concentrations of 9, 26, 42, and 77 wt% were produced from as-cast ingots by homogenization at 850 °C followed by quenching. The subsequent high-pressure torsion (5 torsions at 5 GPa) leads to the grain refinement (grain size about 100 nm) and to the decomposition of the supersaturated solid solution in the alloys containing 42 and 77 wt% Ni. The lattice spacing of the fine Cu-rich regions in the Cu–77 wt% Ni alloy was measured by the X-ray diffraction (XRD). They contain 28 ± 5 wt% Ni. The amount of the fine Ni-rich ferromagnetic regions in the paramagnetic Cu–42 wt% Ni alloy was estimated by comparing its magnetization with that of fully ferromagnetic Cu–77 wt% Ni alloy. According to the lever rule, these Ni-rich ferromagnetic regions contain about 88 wt% Ni. It means that the high-pressure torsion of the supersaturated Cu–Ni solid solutions produces phases which correspond to the equilibrium solubility limit at 200 ± 40 °C (Cu–77 wt% Ni alloy) and 270 ± 20 °C (Cu–42 wt% Ni alloy). To explain this phenomenon, the concept of the effective temperature proposed by Martin (Phys Rev B 30:1424, 1984) for the irradiation-driven decomposition of supersaturated solid solutions was employed. It follows from this concept that the deformation-driven decomposition of supersaturated Cu–Ni solid solutions proceeds at the mean effective temperature T eff = 235 ± 30 °C. The elevated effective temperature for the high-pressure torsion-driven decomposition of a supersaturated solid solution has been observed for the first time. Previously, only the T eff equal to the room temperature was observed in the Al–Zn alloys.


Severe Plastic Deformation Equal Channel Angular Pressing Effective Temperature Interdiffusion Coefficient Supersaturated Solid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The investigations were partly supported by Russian Foundation for Basic Research (contracts 09-03-92481, 09-08-90406 and 11-08-90439) and Israel Ministry of Science (contract 3-5790). Authors cordially thank Prof. A.M. Gusak for stimulating discussions.


  1. 1.
    Kunimine T, Aragaki T, Fujii T et al (2011) J Mater Sci 46:4302. doi: 10.1007/s10853-010-5243-4 CrossRefGoogle Scholar
  2. 2.
    Rebhi A, Makhlouf T, Champion Y et al (2011) J Mater Sci 46:2185. doi: 10.1007/s10853-010-5056-5 CrossRefGoogle Scholar
  3. 3.
    Wang CT, Gao N, Wood RJK et al (2011) J Mater Sci 46:123. doi: 10.1007/s10853-010-4862-0 CrossRefGoogle Scholar
  4. 4.
    Kawasaki M, Mendes AD, Sordi VL et al (2011) J Mater Sci 46:155. doi: 10.1007/s10853-010-4889-2 CrossRefGoogle Scholar
  5. 5.
    Zrnik J, Pippan R, Scheriau S et al (2010) J Mater Sci 45:4822. doi: 10.1007/s10853-010-4482-8 CrossRefGoogle Scholar
  6. 6.
    Martin G (1984) Phys Rev B 30:1424CrossRefGoogle Scholar
  7. 7.
    Delogu F (2009) Mater Chem Phys 115:641CrossRefGoogle Scholar
  8. 8.
    Xi SQ, Zuo KS, Li XG et al (2008) Acta Mater 56:6050CrossRefGoogle Scholar
  9. 9.
    Delogu F (2008) Scripta Mater 58:126CrossRefGoogle Scholar
  10. 10.
    Jiang WH, Atzmon M (2006) Scripta Mater 54:333CrossRefGoogle Scholar
  11. 11.
    Ye J, Liu JW, Enrique RA et al (2003) Scripta Mater 49:969CrossRefGoogle Scholar
  12. 12.
    Sheng HW, Lu K, Ma E (1999) J Appl Phys 85:6400CrossRefGoogle Scholar
  13. 13.
    Xu J, Collins GS, Peng LSJ et al (1999) Acta Mater 47:1241CrossRefGoogle Scholar
  14. 14.
    Ma E, Atzmon M (1995) Mater Chem Phys 39:249CrossRefGoogle Scholar
  15. 15.
    Adda Y, Beyeler M, Brebec G (1975) Thin Solid Films 25:107CrossRefGoogle Scholar
  16. 16.
    Roussel JM, Bellon P (2002) Phys Rev B 65:144107CrossRefGoogle Scholar
  17. 17.
    Wei LC, Averback RS (1997) J Appl Phys 81:613CrossRefGoogle Scholar
  18. 18.
    Soisson F, Bellon P, Martin G (1992) Phys Rev B 46:11332CrossRefGoogle Scholar
  19. 19.
    Valiev RZ, Estrin Y, Horita Z et al (2006) JOM 4:33CrossRefGoogle Scholar
  20. 20.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  21. 21.
    Valiev R, Islamgaliev R, Alexandrov I (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  22. 22.
    Straumal BB, Kogtenkova OA, Protasova SG et al (2011) J Mater Sci 46:4243. doi: 10.1007/s10853-011-5257-6 CrossRefGoogle Scholar
  23. 23.
    Straumal BB, Baretzky B, Mazilkin AA et al (2004) Acta Mater 52:4469CrossRefGoogle Scholar
  24. 24.
    Mazilkin AA, Straumal BB, Rabkin E et al (2006) Acta Mater 54:3933CrossRefGoogle Scholar
  25. 25.
    Straumal BB, Mazilkin AA, Protasova SG et al (2009) Mater Sci Eng A 503:185CrossRefGoogle Scholar
  26. 26.
    Straumal BB, Dobatkin SV, Rodin AO et al (2011) Adv Eng Mater 13:463CrossRefGoogle Scholar
  27. 27.
    Prokoshkin SD, Khmelevskaya IY, Dobatkin SV et al (2005) Acta Mater 53:2703CrossRefGoogle Scholar
  28. 28.
    Li W, Li X, Guo G et al (2009) Appl Phys Lett 94:231904CrossRefGoogle Scholar
  29. 29.
    Straumal BB, Mazilkin AA, Protasova SG et al (2011) Kovove Mater Metall Mater 49:17Google Scholar
  30. 30.
    Mazilkin AA, Abrosimova GE, Protasova SG et al (2011) J Mater Sci 46:4336. doi: 10.1007/s10853-011-5304-3 CrossRefGoogle Scholar
  31. 31.
    Massalski TB (ed) (1990) Binary alloy phase diagrams. ASM International, Materials Park, OHGoogle Scholar
  32. 32.
    Coles BR (1955–1956) J Inst Metals 84:346Google Scholar
  33. 33.
    Lihl F, Ebel H, Reichl A et al (1968) Z Metallkunde 59:735Google Scholar
  34. 34.
    Mazilkin AA, Kogtenkova OA, Straumal BB et al (2005) Def Diff Forum 237:739CrossRefGoogle Scholar
  35. 35.
    Straumal BB, Mazilkin AA, Protasova SG et al (2008) Acta Mater 56:6246CrossRefGoogle Scholar
  36. 36.
    Straumal BB, Baretzky B, Mazilkin AA et al (2009) J Eur Ceram Soc 29:1963CrossRefGoogle Scholar
  37. 37.
    Jesser WA, Shneck RZ, Gile WW (2004) Phys Rev B 69:144121CrossRefGoogle Scholar
  38. 38.
    Mehrer H (ed) (1990) Diffusion in solid metals and alloys, Landolt-Börnstein New Series, Gr III, vol 26. Springer-Verlag, BerlinGoogle Scholar
  39. 39.
    Schaeffer H-E (1987) Phys Stat Sol (a) 102:47CrossRefGoogle Scholar
  40. 40.
    Straumal BB, Klinger LM, Shvindlerman LS (1984) Acta Metall 32:1355CrossRefGoogle Scholar
  41. 41.
    Molodov DA, Straumal BB, Shvindlerman LS (1984) Scripta Metall 18:207Google Scholar
  42. 42.
    Divinski SV, Reglitz G, Rösner H et al (2011) Acta Mater 59:1974CrossRefGoogle Scholar
  43. 43.
    Amouyal Y, Divinski SV, Estrin Y et al (2007) Acta Mater 55:5968CrossRefGoogle Scholar
  44. 44.
    Bellon P, Averback RS (1995) Phys Rev Lett 74:1819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • B. B. Straumal
    • 1
    • 2
    Email author
  • S. G. Protasova
    • 1
    • 2
  • A. A. Mazilkin
    • 1
    • 2
  • E. Rabkin
    • 4
  • D. Goll
    • 3
    • 5
  • G. Schütz
    • 3
  • B. Baretzky
    • 1
  • R. Z. Valiev
    • 6
  1. 1.Institut für NanotechnologieKarlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Institute of Solid State PhysicsRussian Academy of SciencesMoscow districtRussia
  3. 3.Max-Planck-Institut für Intelligente Systeme (formerly MPI for Metals Research)StuttgartGermany
  4. 4.Department of Materials EngineeringTECHNION—Israel Institute of TechnologyHaifaIsrael
  5. 5.Hochschule AalenAalenGermany
  6. 6.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations