Journal of Materials Science

, Volume 47, Issue 1, pp 184–198

Interfacial heating during low-pressure cold-gas dynamic spraying of aluminum coatings

Article

Abstract

Low-pressure cold spraying was used to deposit aluminum particles (~25 μm diameter) on to low carbon steel, and the particle–particle interactions of the aluminum coating were analyzed. A simplified energy conservation model was developed to estimate the temperature at the interface of the deformed particle during deposition of the powder. The Johnson–Cook model was used to calculate the particle flow stress, which was used to estimate the total energy dissipated via plastic deformation during impact and spreading of the particle. Microstructural analysis was conducted to show that plastic deformation occurred mainly at the interfacial regions of the deformed particles. By coupling microstructural observations of the cold-sprayed particles with the energy conservation model, it was found that the interface between the aluminum particles contained recrystallized ultra-fine and nanocrystalline grain structures that were likely formed at temperatures above 260 °C, but the majority of particles likely achieved interfacial temperatures which were lower than the melting point of aluminum (660 °C). This suggests that local melting is not likely to dominate the inter-particle bonding mechanism, and the resulting interfacial regions contain ultra-fine grain structures, which significantly contribute to the coating hardness.

List of symbols

A

Yield stress (MPa)

Ap

Projected area normal to gas flow (m2)

As

Surface area of particle (m2)

B

Johnson–Cook strain hardening constant (Pa)

Bi

Biot number

cp

Specific heat capacity (J kg−1 K−1)

C

Johnson–Cook strain rate constant

CD

Drag coefficient

dp

Particle diameter (m)

dsplat

Splat diameter, after spreading (m)

Dnozzle

Nozzle diameter (m)

Ek

Kinetic energy (J)

Ep

Plastic deformation energy (J)

h

Heat transfer coefficient (W m−2 K−1)

k

Thermal conductivity (W m−1 K−1)

kg

Thermal conductivity of free stream carrier gas (W m−1 K−1)

Lx

Distance traveled by particle (m)

mp

Particle mass (kg)

M

Mach number

n

Hardening exponent

Nu

Nusselt number, Nu = hdp/kg

Pg

Absolute gas pressure (Pa)

Pr

Prandtl number, Pr = cpμ/kg

r

Recovery factor

R

Gas constant (kJ kg−1 K−1)

\( Re_{{d_{\text{p}} }} \)

Reynolds number based on particle diameter, \( Re_{{d_{\text{p}} }} = \rho_{\text{g}} (V_{\text{g}} - V_{\text{p}} )d_{\text{p}} /\mu_{\text{g}} \)

tc

Contact time (s)

ti

Time at iteration i

tx

Time traveled by particle (s)

Taw

Adiabatic-wall temperature (K)

Tg

Free stream carrier gas temperature (K)

Ti

Temperature at increment i (K)

Tinitial

Initial particle temperature prior to impact (K)

Tinterface

Particle–substrate interface temperature (°C)

Tbulk

Temperature in the interior of the particle during deformation (°C)

Tm

Melting temperature (K)

To

Ambient temperature (K)

Tsub

Temperature of substrate (K)

Vg

Carrier gas velocity (m/s)

Vi

Particle velocity at increment i

Vp

Particle velocity (m/s)

X

Nozzle length (m)

Greek symbols

α

Thermal diffusivity (m2s−1)

γ

Specific heat ratio

δ

Lamellae thickness (m)

εf

Final von Mises equivalent strain

εi

Equivalent strain at increment i

εi*

Strain rate at increment i

θ

Non-dimensional interface temperature

μg

Viscosity of free stream carrier gas (kg m−1 s−1)

μs

Viscosity of gas at particle surface (kg m−1 s−1)

μo

Reference viscosity of gas (kg m−1 s−1)

ξ

Non-dimensional particle diameter

ρ

Particle/splat density (kg m−3)

ρg

Gas density (kg m−3)

σ

Von Mises equivalent flow stress (Pa)

Ω

Particle volume (m3)

Ωsplat

Volume of a particle after impact and deformation on the substrate (m3)

References

  1. 1.
    Alkhimov A, Kosarev V, Papyrin A (1990) Dokl Akad Nauk SSSR 315:1062Google Scholar
  2. 2.
    Schmidt T, Gärtner F, Assadi H, Kreye H (2006) Acta Mater 54:729CrossRefGoogle Scholar
  3. 3.
    Klinkov S, Kosarev V, Rein M (2005) Aerosp Sci Technol 9:582CrossRefGoogle Scholar
  4. 4.
    Grujicic M (2007) In: Champagne V (ed) Fundamentals of cold-gas dynamic spray. Woodhead Publishing Limited, LondonGoogle Scholar
  5. 5.
    Assadi H, Gartner F, Stoltenhoff T, Kreye H (2003) Acta Mater 51:4379CrossRefGoogle Scholar
  6. 6.
    Papyrin A, Kosarev V, Klinkov S, Alkhimov A, Fomin V (2007) Cold spray technology. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Tokarev A (1996) Met Sci Heat Treat 38:136CrossRefGoogle Scholar
  8. 8.
    Vlcek J, Gimeno L, Huber H, Lugscheider E (2003) In: International thermal spray conference 2003: advancing the science and applying the technology, OrlandoGoogle Scholar
  9. 9.
    Zhang D, Shipway PH, McCartney DG (2003) In: International thermal spray conference 2003: advancing the science and applying the technology, OrlandoGoogle Scholar
  10. 10.
    Li C-J, Li W-Y, Xi’an PRC, Fukanuma H, Saitama J (2004) In: International thermal spray conference 2004: advances in technology and application, OsakaGoogle Scholar
  11. 11.
    Vlcek J, Gimeno L, Huber H, Lugscheider E (2005) J Therm Spray Technol 14(1):125CrossRefGoogle Scholar
  12. 12.
    Hussain T, McCartney D, Shipway P, Zhang D (2009) J Therm Spray Technol 18:364CrossRefGoogle Scholar
  13. 13.
    Schmidt T, Assadi H, Gärtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) J Therm Spray Technol 18:794CrossRefGoogle Scholar
  14. 14.
    Barradas S, Guipont V, Molins R, Jeandin M, Arrigoni M, Boustie M, Bolis C, Berthe L, Ducos M (2007) J Therm Spray Technol 16:548CrossRefGoogle Scholar
  15. 15.
    King P, Zahiri S, Jahedi M (2008) Acta Mater 56:5617CrossRefGoogle Scholar
  16. 16.
    Borchers C, Gartner F, Stoltenhoff T, Kreye H (2004) J Appl Phys 96:4288CrossRefGoogle Scholar
  17. 17.
    Zou Y, Qin W, Irissou E, Legoux J-G, Yue S, Szpunar J (2009) Scr Mater 61:899CrossRefGoogle Scholar
  18. 18.
    Li C, Li W, Wang Y (2005) Surf Coat Technol 198:469CrossRefGoogle Scholar
  19. 19.
    Hall A, Brewer L, Roemer T (2008) J Therm Spray Technol 17:352CrossRefGoogle Scholar
  20. 20.
    Koch C (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Ajdelsztajn L, Jodoin B, Kim G, Schoenung J (2005) Metall Mater Trans A 36A:657CrossRefGoogle Scholar
  22. 22.
    Grujicic M, Zhao C, DeRosset W, Helfritch D (2004) Mater Des 25:681CrossRefGoogle Scholar
  23. 23.
    Goldbaum D, Chromik R, Yue S, Irissou E, Legoux J-G (2011) J Therm Spray Technol 20:486CrossRefGoogle Scholar
  24. 24.
    Borchers C, Gärtner F, Stoltenhoff T, Assadi H, Kreye H (2003) J Appl Phys 93:10064CrossRefGoogle Scholar
  25. 25.
    Kapoor R, Nemat-Nasser S (1998) Mech Mater 27:1CrossRefGoogle Scholar
  26. 26.
    Johnson G, Cook W (1983) In: 7th international symposium on ballistics, The HagueGoogle Scholar
  27. 27.
    Raybould D (1981) J Mater Sci 16:589. doi:10.1007/BF02402774 CrossRefGoogle Scholar
  28. 28.
    Jiji L (2009) Heat conduction, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  29. 29.
    Shapiro A (1953) The dynamics and thermodynamics of compressible fluid flow, vol I. The Ronald Press Company, New YorkGoogle Scholar
  30. 30.
    Kaye J (1954) J Aeronaut Sci 21:117Google Scholar
  31. 31.
    Shapiro A (1954) The dynamics and thermodynamics of compressible fluid flow, vol II. The Ronald Press Company, New YorkGoogle Scholar
  32. 32.
    Dykhuizen R, Smith M (1998) J Therm Spray Technol 7:205CrossRefGoogle Scholar
  33. 33.
    Legoux J-G, Irissou E, Moreau C (2007) J Therm Spray Technol 16:619CrossRefGoogle Scholar
  34. 34.
    Akarca S, Song X, Altenhof W, Alpas A (2008) Proc Inst Mech Eng L 222:209Google Scholar
  35. 35.
    Boyer H, Gall T (1985) Metals Handbook, vol 2. ASM International, Materials ParkGoogle Scholar
  36. 36.
    Gerlich A, Yue L, Mendez P, Zhang H (2010) Acta Mater 58:2176CrossRefGoogle Scholar
  37. 37.
    Gerlich A, Shibayanagi T (2009) Scr Mater 60:236CrossRefGoogle Scholar
  38. 38.
    Kaibyshev O (2000) Scientific bases, achievements and promises of superplastic deformation. Gilem, UfaGoogle Scholar
  39. 39.
    Humphreys F, Hatherly M (2002) Recrystallization and related annealing phenomena. Pergamon Press, OxfordGoogle Scholar
  40. 40.
    Dimitrov O, Fromegeau R, Dimitrov C (1978) In: Haessner F (ed) Recrystallization of metallic materials. Dr. Riederer-verlag GmbH, StuttgartGoogle Scholar
  41. 41.
    Lancaster J (1999) Metallurgy of welding. Abington Publishing, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations