Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7901–7904 | Cite as

Essential work of fracture study of polymers: a novel criterion for the validation of tested ligament range

  • Ferenc Tuba
  • László Oláh
  • Péter Nagy
Article

Abstract

The essential work of fracture method is widely used for the determination of fracture toughness of ductile metals and polymers under plane stress conditions. Nevertheless, this method has numerous prerequisites, which are easy to fulfill in metals, but are less certain in polymers. The aim of this study was, therefore, to present a simple, empiric “displacement-criterion” that helps the determination of valid ligament lengths for polymers—one of the biggest sources of error of this theory. This criterion not only facilitates the definition of a lower bound, but also helps the description of an upper ligament limit. Its other advantage is, that combined with a stress criterion, it helps the data validation not only until crack initiation, but also over the entire deformation process.

Keywords

Linear Elastic Fracture Mechanic LLDPE Ligament Length Essential Work Fracture Work 

Notes

Acknowledgements

This study is connected to the scientific program of the “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project. This project is supported by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

References

  1. 1.
    Bárány T, Czigány T, Karger-Kocsis J (2010) Prog Polym Sci 35(10):1257CrossRefGoogle Scholar
  2. 2.
    Cotterell B, Pardoen T, Atkins AG (2005) Eng Fract Mech 72(6):827CrossRefGoogle Scholar
  3. 3.
    Pegoretti A, Castellani L, Franchini L, Mariani P, Penati A (2009) Eng Fract Mech 76(18):2788CrossRefGoogle Scholar
  4. 4.
    Hill R (1952) J Mech Phys Solids 1(1):19CrossRefGoogle Scholar
  5. 5.
    Clutton E (2001) In: Moore DR, Pavan A, Williams JG (eds) Fracture mechanics testing methods for polymers adhesives and composites, vol 28. Elsevier, Amsterdam, p 177CrossRefGoogle Scholar
  6. 6.
    Cotterell B, Reddel JK (1977) Int J Fract 13(3):267. doi: https://doi.org/10.1007/bf00040143 Google Scholar
  7. 7.
    Marchal Y, Walhin J-F, Delannay F (1997) Int J Fract 87(2):189CrossRefGoogle Scholar
  8. 8.
    Wu J, Mai Y-W (1996) Polym Eng Sci 36(18):2275. doi: https://doi.org/10.1002/pen.10626 CrossRefGoogle Scholar
  9. 9.
    Arkhireyeva A, Hashemi S (2001) Plast Rubber Compos 30(7):337CrossRefGoogle Scholar
  10. 10.
    Duan K, Hu X, Stachowiak G (2006) Compos Sci Technol 66(16):3172CrossRefGoogle Scholar
  11. 11.
    Martinez AB, Gamez-Perez J, Sanchez-Soto M, Velasco JI, Santana OO, Ll Maspoch M (2009) Eng Fail Anal 16(8):2604CrossRefGoogle Scholar
  12. 12.
    Gamez-Perez J (2007) Structure-properties relationships of polypropylene and ethylene-propylene block copolymers plates and thin sheets obtained by different transformation processes. PhD thesis, UPC-BarcelonaTech, BarcelonaGoogle Scholar
  13. 13.
    Gamez-Perez J, Velazquez-Infante JC, Franco-Urquiza E, Pages P, Carrasco F, Santana OO, Maspoch ML (2011) Express Polym Lett 5(1):82CrossRefGoogle Scholar
  14. 14.
    Oláh L, Tuba F (2010) Macromol Symp 296(1):371. doi: https://doi.org/10.1002/masy.201051051 CrossRefGoogle Scholar
  15. 15.
    Williams JG, Rink M (2007) Eng Fract Mech 74(7):1009CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Polymer EngineeringBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  3. 3.Polymer Competence Center Leoben GmbHLeobenAustria

Personalised recommendations