Journal of Materials Science

, Volume 47, Issue 3, pp 1171–1186 | Cite as

A critical review of all-cellulose composites

  • Tim Huber
  • Jörg Müssig
  • Owen Curnow
  • Shusheng Pang
  • Simon Bickerton
  • Mark P. Staiger
Materials in New Zealand


Cellulose is a fascinating biopolymer of almost inexhaustible quantity. While being a lightweight material, it shows outstanding values of strength and stiffness when present in its native form. Unsurprisingly, cellulose fibre has been rigorously investigated as a reinforcing component in biocomposites. In recent years, however, a new class of monocomponent composites based on cellulosic materials, so-called all-cellulose composites (ACCs) have emerged. These new materials promise to overcome the critical problem of fibre–matrix adhesion in biocomposites by using chemically similar or identical cellulosic materials for both matrix and reinforcement. A number of papers scattered throughout the polymer, composites and biomolecular science literature have been published describing non-derivatized and derivatized ACCs. Exceptional mechanical properties of ACCs have been reported that easily exceed those of traditional biocomposites. Several different processing routes have been applied to the manufacture of ACCs using a broad range of different solvent systems and raw materials. This article aims to provide a comprehensive review of the background chemistry and various cellulosic sources investigated, various synthesis routes, phase transformations of the cellulose, and mechanical, viscoelastic and optical properties of ACCs. The current difficulties and challenges of ACCs are clearly outlined, pointing the way forward for further exploration of this interesting subcategory of biocomposites.


Cellulose Bacterial Cellulose Propylene Oxide Cellulosic Material Amorphous Cellulose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support of the New Zealand Foundation for Research, Science, and Technology.


  1. 1.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Edn 44(22):3358CrossRefGoogle Scholar
  2. 2.
    Perepelkin KE (2003) In: Conference proceedings of the 4th Internationales Symposium “Werkstoffe aus Nachwachsenden Rohstoffen”, Erfurt, GermanyGoogle Scholar
  3. 3.
    Kolpak F, Blackwell J (1976) Macromolecules 9(2):273CrossRefGoogle Scholar
  4. 4.
    Brown R Jr, Saxena I (2000) Plant Physiol Biochem 38(1–2):57CrossRefGoogle Scholar
  5. 5.
    O’Sullivan A (1997) Cellulose 4(3):173CrossRefGoogle Scholar
  6. 6.
    Zugenmaier P (2001) Prog Polym Sci 26(9):1341CrossRefGoogle Scholar
  7. 7.
    Morton WE, Hearle JWS (1962) Physical properties of textile fibres, vol 1. Butterworth & Co. Ltd., LondonGoogle Scholar
  8. 8.
    Ishikawa A, Okano T, Sugiyama J (1997) Polymer 38(2):463CrossRefGoogle Scholar
  9. 9.
    Vanderhart DL, Atalla RH (1984) Macromolecules 17(8):1465CrossRefGoogle Scholar
  10. 10.
    Mann J (1962) Pure Appl Chem 5:91CrossRefGoogle Scholar
  11. 11.
    Chen W, Lickfield G, Yang C (2004) Polymer 45(3):1063CrossRefGoogle Scholar
  12. 12.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57(165):651CrossRefGoogle Scholar
  13. 13.
    Nishino T, Takano K, Nakamae K (1995) J Polym Sci B 33(11):1647CrossRefGoogle Scholar
  14. 14.
    Nishino T, Matsuda I, Hirao K (2003) Cellulose self-reinforced composite. Paper presented at the ecocomposites, University of LondonGoogle Scholar
  15. 15.
    Wegst U, Ashby M (2004) Philos Mag 84(21):2167CrossRefGoogle Scholar
  16. 16.
    Lyons W (1941) J Chem Phys 9:377CrossRefGoogle Scholar
  17. 17.
    Staiger MP, Tucker N (2008) In: Pickering KL (ed) Properties and performance of natural-fibre composites, vol 1. Woodhead Publishing Limited, Cambridge, p 269CrossRefGoogle Scholar
  18. 18.
    Gray D (1974) J Polym Sci 12(9):509Google Scholar
  19. 19.
    McAllister DH, Pearson P, Wells H (1982) In: Proceedings of the reinforced plastics congress, British Plastics Federation, Brighton, UK, p. 3Google Scholar
  20. 20.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24(2):221CrossRefGoogle Scholar
  21. 21.
    Eichhorn SJ, Baillie CA, Zafeiropoulus N et al (2001) J Mater Sci 36:2107CrossRefGoogle Scholar
  22. 22.
    Saheb DN, Jog NP (1999) Adv Polym Technol 18:351CrossRefGoogle Scholar
  23. 23.
    Wambua P, Ivens J (2003) Compos Sci Technol 63:1259CrossRefGoogle Scholar
  24. 24.
    Anandjiwala RD, Blouw S (2004) In: Proceedings of the FAO global workshop: bast fibrous plants for healthy life, Banja Luka, Bosnia-Herzegovina, 2004Google Scholar
  25. 25.
    Bodros E, Pillin I, Montrelay N, Baley C (2007) Compos Sci Technol 67:462CrossRefGoogle Scholar
  26. 26.
    Carus M, Gahle C, Pendarovski C, Vogt D, Ortmann S, Grotenhermen F, Breuer T, Schmidt C (2008) Studie Zur Markt- Und Konkurrenzsituation Bei Naturfasern Und Naturfaserwerkstoffen (Deutschland Und Eu), vol 26. Fachagentur Nachwachsende Rohstoffe (FNR), GülzowGoogle Scholar
  27. 27.
    Karus M, Kaup M (2002) J Int Hemp Assoc 7(1):119CrossRefGoogle Scholar
  28. 28.
    Karus M, Ortmann S (2005) Kunststoffe 7:51Google Scholar
  29. 29.
    Bos H (2004) The potential of flax fibres as reinforcement for composite materials. Technische Universität Eindhoven, EindhovenGoogle Scholar
  30. 30.
    Fowler PA, Hughes JM, Elias RM (2006) J Sci Food Agric 86(12):1781CrossRefGoogle Scholar
  31. 31.
    Gassan J (1999) Die Angewandte Makromolekulare Chemie 272:17CrossRefGoogle Scholar
  32. 32.
    Jacob John M, Thomas S (2008) Carbohydr Polym 71:343CrossRefGoogle Scholar
  33. 33.
    Oksman K, Wallstrom L, Berglund LA, Toledo RD (2002) J Appl Polym Sci 84(13):2358CrossRefGoogle Scholar
  34. 34.
    Mohanty A, Misra M, Drzal L (2002) J Environ Polym Degr 10(1):19CrossRefGoogle Scholar
  35. 35.
    Müssig J, Cescutti G, Fischer H (2006) In: Bouloc P (ed) Le Chanvre Industriel—Production Et Utilisations, vol 1. Groupe France Agricole (Editions France Agricole), Paris, p 235Google Scholar
  36. 36.
    Müssig J, Fischer H, Graupner N, Drieling A (2010) In: Müssig J (ed) Industrial applications of natural fibres structure, properties and technical applications, vol 1. Wiley, Chichester, p 269CrossRefGoogle Scholar
  37. 37.
    Huber T, Graupner N, Müssig J (2010) In: Müssig J (ed) Industrial applications of natural fibres structure, properties and technical applications, vol 1. Wiley, Chichester, p 407Google Scholar
  38. 38.
    Cheung HY, Lau KT, Tao XM, Hui DA (2008) Compos B 39(6):1026CrossRefGoogle Scholar
  39. 39.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) Biomacromolecules 8(1):1CrossRefGoogle Scholar
  40. 40.
    Habibi Y, Dufresne A (2008) Biomacromolecules 9(7):1974CrossRefGoogle Scholar
  41. 41.
    Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Mater Lett 60(13–14):1710CrossRefGoogle Scholar
  42. 42.
    Müssig J, Schmehl M, Von Buttlar HB, Schönfeld U (2006) Smc-Werkstoff Aus Naturfasern Und Pflanzenölharz—Entwicklung Eines Karosseriebauteils Auf Basis Nachwachsender Rohstoffe. Kunststoffe 96Google Scholar
  43. 43.
    Riedel U, Nickel J (2001) Materialwissenschaft Werkstofftechnik 32(5):493CrossRefGoogle Scholar
  44. 44.
    Romhany G, Karger-Kocsis J, Czigany T (2003) Macromol Mater Eng 288(9):699CrossRefGoogle Scholar
  45. 45.
    Huber T, Müssig J (2008) Compos Interfaces 15(2–3):335CrossRefGoogle Scholar
  46. 46.
    D′Almeida (1991) J Mater Sci Lett 2:3Google Scholar
  47. 47.
    Drzal LT (1993) J Mater Sci 28:569. doi: 10.1007/BF01151234 CrossRefGoogle Scholar
  48. 48.
    Arbelaiz A, Fernandez B, Ramos J, Retegi A, Llano-Ponte R, Mondragon I (2005) Compos Sci Technol 65(10):1582CrossRefGoogle Scholar
  49. 49.
    George J, Sreekala MS, Thomas SA (2001) Polym Eng Sci 41(9):1471CrossRefGoogle Scholar
  50. 50.
    Caulfield D, Feng D, Prabawa S, Young R, Sanadi A (1999) Die Angew Makromol Chem 272(4757):57Google Scholar
  51. 51.
    Jacob M, Joseph S, Pothan L, Thomas SA (2005) Compos Interfaces 12(1):95CrossRefGoogle Scholar
  52. 52.
    Tu X, Young R, Denes F (1994) Cellulose 1(1):87CrossRefGoogle Scholar
  53. 53.
    Huber T, Biedermann U, Müssig J (2010) Compos Interfaces 17(4):371CrossRefGoogle Scholar
  54. 54.
    Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) J Tissue Eng Regen Med 1(5):406CrossRefGoogle Scholar
  55. 55.
    Piao H, Duchemin B, Dean S, Schrecker S, Pietak A, Gostomski PA, Staiger MP (2005) In: Proceedings of the ecocomposites, Stockholm, SwedenGoogle Scholar
  56. 56.
    Bhatnagar A, Sain M (2005) J Reinf Plast Compos 12:1259CrossRefGoogle Scholar
  57. 57.
    Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) J Environ Polym Degr 13(4):301CrossRefGoogle Scholar
  58. 58.
    Oksman K, Mathew A, Bondeson D, Kvien I (2006) Compos Sci Technol 66(15):2776CrossRefGoogle Scholar
  59. 59.
    Azizi Samir MAS, Alloin F, Dufresne A (2005) Biomacromolecules 6(2):612CrossRefGoogle Scholar
  60. 60.
    Helbert W, Cavaille J (1996) Polym Compos 17(4):604CrossRefGoogle Scholar
  61. 61.
    Kohler R, Nebel K (2006) Macromol Symp 244(1):97CrossRefGoogle Scholar
  62. 62.
    Fay HB (1942) Reinforced Vulcanized Fiber Backing Belt. US Patent 2,293,246Google Scholar
  63. 63.
    Capiati N, Porter R (1975) J Mater Sci 10(10):1671. doi: 10.1007/bf00554928 CrossRefGoogle Scholar
  64. 64.
    Mead W, Porter R (1978) J Appl Polym Sci 22(11):3249CrossRefGoogle Scholar
  65. 65.
    Teishev A, Marom G (1995) J Appl Polym Sci 56(8):959CrossRefGoogle Scholar
  66. 66.
    Alcock B, Cabrera N, Barkoula NM, Loos J, Peijs T (2003) In: Proceedings of the ecocomposite, London, UKGoogle Scholar
  67. 67.
    Pegoretti A, Zanolli A, Migliaresi C (2006) Compos Sci Technol 66(13):1953CrossRefGoogle Scholar
  68. 68.
    Matabola K, De Vries A, Moolman F, Luyt A (2009) J Mater Sci 44(23):6213. doi: 10.1007/s10853-009-3792-1 CrossRefGoogle Scholar
  69. 69.
    Nishino T, Matsuda I, Hirao K (2004) Macromolecules 37(20):7683CrossRefGoogle Scholar
  70. 70.
    Duchemin BJC, Newman RH, Staiger MP (2009) Compos Sci Technol 69(7–8):1225CrossRefGoogle Scholar
  71. 71.
    Gindl W, Keckes J (2005) Polymer 46(23):10221CrossRefGoogle Scholar
  72. 72.
    Swatloski R, Spear S, Holbrey J, Rogers R (2002) J Am Chem Soc 124(18):4974CrossRefGoogle Scholar
  73. 73.
    Zhao H, Xia S, Ma P (2005) J Chem Technol Biotechnol 80(10):1089CrossRefGoogle Scholar
  74. 74.
    Heinze T, Schwikal K, Barthel S (2005) Macromol Biosci 5(6):520CrossRefGoogle Scholar
  75. 75.
    Yang Z, Pan W (2005) Enzym Microbial Technol 37(1):19CrossRefGoogle Scholar
  76. 76.
    Rogers R, Seddon K, Meeting ACS (2003) Ionic liquids as green solvents: progress and prospects. American Chemical Society, WashingtonCrossRefGoogle Scholar
  77. 77.
    Johnson D (1969) Process for strengthening swellable fibrous material with an amine oxide and the resulting material. United States Patent 3447956Google Scholar
  78. 78.
    McCormick C (1981) Novel cellulose solutions. United States Patent 4278790Google Scholar
  79. 79.
    Isogai A, Atalla R (1995) Alkaline method for dissolving cellulose. United States Patent 5410034Google Scholar
  80. 80.
    Graenacher C (1934) Cellulose solution. United States Patent 1943176Google Scholar
  81. 81.
    Rosenau T, Potthast A, Sixta H, Kosma P (2001) Prog Polym Sci 26(9):1763CrossRefGoogle Scholar
  82. 82.
    Fink HP, Weigel P, Purz H, Ganster J (2001) Prog Polym Sci 26(9):1473CrossRefGoogle Scholar
  83. 83.
    McCorsley C III (1981) Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent. United States Patent 5410034Google Scholar
  84. 84.
    Sfiligoj Smole M, Peršin Z, Kreže T, Stana Kleinschek K, Ribitsch V, Neumayer S (2003) Mater Res Innov 7(5):275CrossRefGoogle Scholar
  85. 85.
    Chanzy H, Paillet M, Hagege R (1990) Polymer 31(3):400CrossRefGoogle Scholar
  86. 86.
    Turbak A, El-Kafrawy A, Snyder Jr F, Auerbach A (1981) Solvent system for cellulose. Unit\ed States Patent 4302252Google Scholar
  87. 87.
    Ishii D, Tatsumi D, Matsumoto T (2003) Biomacromolecules 4(5):1238CrossRefGoogle Scholar
  88. 88.
    Ishii D, Kanazawa Y, Tatsumi D, Matsumoto T (2007) J Appl Polym Sci 103(6):3976CrossRefGoogle Scholar
  89. 89.
    Seurin MJ, Sixou P (1987) Eur Polym J 23(1):77CrossRefGoogle Scholar
  90. 90.
    Bianchi E, Ciferri A, Conio G, Cosani A (1985) Macromolecules 18(4):646CrossRefGoogle Scholar
  91. 91.
    Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006) Compos Sci Technol 66(15):2639CrossRefGoogle Scholar
  92. 92.
    Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006) Biomacromolecules 7(11):3146CrossRefGoogle Scholar
  93. 93.
    Gindl W, Schoeberl T, Keckes J (2006) J Appl Phys A 83(1):19CrossRefGoogle Scholar
  94. 94.
    Nishino T, Arimoto N (2005) In: Conference proceedings of the ecocomposite, Tokyo, JapanGoogle Scholar
  95. 95.
    Nishino T, Arimoto N (2007) Biomacromolecules 8:2712CrossRefGoogle Scholar
  96. 96.
    Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) Cellulose 16:435CrossRefGoogle Scholar
  97. 97.
    Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) Compos Sci Technol 68(10–11):2201CrossRefGoogle Scholar
  98. 98.
    Soykeabkaew N, Nishino T, Peijs T (2009) Compos A 16(3):435Google Scholar
  99. 99.
    Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) Carbohydr Polym 71(3):458CrossRefGoogle Scholar
  100. 100.
    Yan L, Gao Z (2008) Cellulose 15(6):789CrossRefGoogle Scholar
  101. 101.
    Vehviläinen M, Kamppuri T, Rom M, Janicki J (2008) Cellulose 15(5):671CrossRefGoogle Scholar
  102. 102.
    Ruan D, Zhang L, Lue A, Zhou J, Chen H, Chen X, Chu B, Kondo TA (2006) Macromol Rapid Commun 27(17):1495CrossRefGoogle Scholar
  103. 103.
    Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Macromol Rapid Commun 25(17):1558CrossRefGoogle Scholar
  104. 104.
    Kamida K, Okajima K, Matsui T, Kowsaka K (1984) Polym J 16(12):857CrossRefGoogle Scholar
  105. 105.
    Cuissinat C, Navard P (2006) Macromol Symp 244(1):19CrossRefGoogle Scholar
  106. 106.
    Jin H, Zha C, Gu L (2007) Carbohydr Res 342(6):851CrossRefGoogle Scholar
  107. 107.
    Kuo Y, Hong J (2005) Polym Adv Technol 16(5):425CrossRefGoogle Scholar
  108. 108.
    Cao Y, Tan H (2006) J Appl Polym Sci 102(1):920CrossRefGoogle Scholar
  109. 109.
    Liang S, Zhang L, Li Y, Xu J (2007) Macromol Chem Phys 208(6):594CrossRefGoogle Scholar
  110. 110.
    Isogai A, Atalla R (1998) Cellulose 5(4):309CrossRefGoogle Scholar
  111. 111.
    Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K (1990) Br Polym J 22(1):73CrossRefGoogle Scholar
  112. 112.
    Kunze J, Fink H (2005) Macromol Symp 223(1):175CrossRefGoogle Scholar
  113. 113.
    Ramnial T, Ino D, Clyburne J (2005) Chem Commun 2005(3):325CrossRefGoogle Scholar
  114. 114.
    Forsyth S, Pringle J, MacFarlane D (2004) ChemInform 35(20):113CrossRefGoogle Scholar
  115. 115.
    Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li R (2009) Cellulose 16(2):217CrossRefGoogle Scholar
  116. 116.
    Remsing R, Swatloski R, Rogers R, Moyna G (2006) Chem Commun (Camb) 28(12):1271CrossRefGoogle Scholar
  117. 117.
    Pinkert A, Marsh K, Pang S (2009) Chem Rev 109:6712CrossRefGoogle Scholar
  118. 118.
    Thuy Pham TP, Cho CW, Yun YS (2010) Water Res 44(2):352CrossRefGoogle Scholar
  119. 119.
    Swatloski RP, Holbrey JD, Rogers RD (2003) Green Chem 5(4):361CrossRefGoogle Scholar
  120. 120.
    Duchemin BJC, Newman RH, Staiger MP (2007) Cellulose 14(4):311CrossRefGoogle Scholar
  121. 121.
    Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277(1):1CrossRefGoogle Scholar
  122. 122.
    Ouajai S, Shanks RA (2009) Compos Sci Technol 69(13):2119CrossRefGoogle Scholar
  123. 123.
    Bledzki AK, Fink HP, Specht K (2004) J Appl Polym Sci 93(5):2150CrossRefGoogle Scholar
  124. 124.
    Zhou LM, Yeung KWP, Yuen CWM (2002) Text Res J 72(6):531CrossRefGoogle Scholar
  125. 125.
    Qi H, Cai J, Zhang L, Kuga S (2009) Biomacromolecules 10(6):1597CrossRefGoogle Scholar
  126. 126.
    Duchemin BJC, Mathew AP, Oksman K (2009) Compos A 40(12):2031CrossRefGoogle Scholar
  127. 127.
    Petersson L, Oksman K (2006) In: Oksman K, Sain M (eds) Cellulose nanocomposites—processing, characterization and properties, vol 1. American Chemical Society, Washington, p 133Google Scholar
  128. 128.
    Mathew AP, Chakraborty A, Oksman K, Sain M (2006) In: Oksman KSM (ed) Cellulose nanocomposites—processing, characterization and properties, vol 1. American Chemical Society, Washington, p 115Google Scholar
  129. 129.
    Bax B, Müssig J (2008) Compos Sci Technol 68(7–8):1601CrossRefGoogle Scholar
  130. 130.
    Sreekumar PA, Albert P, Unnikrishnan G, Joseph K, Thomas S (2008) J Appl Polym Sci 109(3):1547CrossRefGoogle Scholar
  131. 131.
    Madsen B, Lilholt H (2003) Compos Sci Technol 63(9):1265CrossRefGoogle Scholar
  132. 132.
    Khondker OA, Ishiaku US, Nakai A, Hamada HA (2006) Compos A 37(12):2274CrossRefGoogle Scholar
  133. 133.
    Van de Weyenberg I, Truong TC, Vangrimde B (2006) Compos A 37(9):1368CrossRefGoogle Scholar
  134. 134.
    Ochi S (2008) Mech Mater 40(4–5):446CrossRefGoogle Scholar
  135. 135.
    Yano S, Hatakeyama H, Hatakeyama T (1976) J Appl Polym Sci 20(12):3221CrossRefGoogle Scholar
  136. 136.
    Szczesniak L, Rachocki A, Tritt-Goc J (2008) Cellulose 15(3):445CrossRefGoogle Scholar
  137. 137.
    Nishiyama Y, Langan P, Chanzys H (2002) J Am Chem Soc 124(31):9074CrossRefGoogle Scholar
  138. 138.
    Shen T, Gnanakaran S (2009) Biophys J 96(8):3032CrossRefGoogle Scholar
  139. 139.
    Jafarpour G, Dantras E, Boudet A, Lacabanne C (2007) J Non-Cryst Solids 353(44–46):4108CrossRefGoogle Scholar
  140. 140.
    Montes H, Mazeau K, Cavaille J (1997) Macromolecules 30(22):6977CrossRefGoogle Scholar
  141. 141.
    Montes H, Mazeau K (1998) J Non-Cryst Solids 235:416CrossRefGoogle Scholar
  142. 142.
    Manabe S, Iwata M, Kamide K (1986) Polym J 18(1):1CrossRefGoogle Scholar
  143. 143.
    Hongo T, Yamane C, Saito M, Okajima K (1996) Polym J 28(9):769CrossRefGoogle Scholar
  144. 144.
    Yamane C, Mori M, Saito M, Okajima K (1996) Polym J 28(12):1039CrossRefGoogle Scholar
  145. 145.
    Zickler GA, Wagermaier W, Funari SS, Burghammer M, Paris O (2007) J Anal Appl Pyrol 80(1):134CrossRefGoogle Scholar
  146. 146.
    Nogi M, Handa K, Nakagaito AN, Yano H (2005) Appl Phys Lett 87:243110Google Scholar
  147. 147.
    Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Prog Polym Sci 26(9):1605CrossRefGoogle Scholar
  148. 148.
    Ganster J, Fink H (2006) Cellulose 13(3):271CrossRefGoogle Scholar
  149. 149.
    Heinze T, Liebert T, Pfeiffer K, Hussain M (2003) Cellulose 10(3):283CrossRefGoogle Scholar
  150. 150.
    Seavey K, Ghosh I, Davis R (2001) Cellulose 8(2):149CrossRefGoogle Scholar
  151. 151.
    Glasser WG (2004) Macromol Symp 208(1):371Google Scholar
  152. 152.
    Glasser WG, Taib R, Jain RK, Kander R (1999) J Appl Polym Sci 73(7):1329CrossRefGoogle Scholar
  153. 153.
    Woodings C (2001) Regenerated cellulose fibres, vol 1. Woodhead Publishing Ltd, Boca RantonCrossRefGoogle Scholar
  154. 154.
    Shen L, Patel MK (2010) Lenzinger Berichte 88:1Google Scholar
  155. 155.
    Lorand EJ, Georgi EA (1937) J Am Chem Soc 59(7):1166CrossRefGoogle Scholar
  156. 156.
    Wolfrom ML, Eltaraboulsi MA (1954) J Am Chem Soc 76(8):2216CrossRefGoogle Scholar
  157. 157.
    Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2001) Adv Compos Lett 10(2):73Google Scholar
  158. 158.
    Lu X, Zhang MQ, Rong MZ, Shi G (2002) Polym Compos 23(4):624CrossRefGoogle Scholar
  159. 159.
    Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2003) Compos Sci Technol 63(2):177CrossRefGoogle Scholar
  160. 160.
    Zhang MQ, Rong MZ, Lu X (2005) Compos Sci Technol 65(15–16):2514CrossRefGoogle Scholar
  161. 161.
    Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC, Zeng HM (1999) Adv Compos Lett 8(5):231Google Scholar
  162. 162.
    de Menezes AJ, Pasquini D, Curvelo AAD (2009) Cellulose 16(2):239CrossRefGoogle Scholar
  163. 163.
    de Menezes AJ, Pasquini D, Curvelo AAD (2009) Carbohydr Polym 76(3):437CrossRefGoogle Scholar
  164. 164.
    Gandini A, Curvelo AAD, Pasquini D, de Menezes AJ (2005) Polymer 46(24):10611CrossRefGoogle Scholar
  165. 165.
    Matsumura H, Glasser WG (2000) J Appl Polym Sci 78(13):2254CrossRefGoogle Scholar
  166. 166.
    Matsumura H, Sugiyama J (2000) J Appl Polym Sci 78(13):2242CrossRefGoogle Scholar
  167. 167.
    Bodin A, Backdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007) Biotechnol Bioeng 97(2):425CrossRefGoogle Scholar
  168. 168.
    Jiang HJ, Wang YL, Jia SR, Huang Y, He F, Wan YZ (2007) Bioceramics 19(330–332):923Google Scholar
  169. 169.
    Muller FA, Muller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Biomaterials 27(21):3955CrossRefGoogle Scholar
  170. 170.
    Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Mater Sci Eng 27(4):855CrossRefGoogle Scholar
  171. 171.
    Yun S, Chen Y, Nayak JN, Kim J (2008) Sens Actuators B 129(2):652CrossRefGoogle Scholar
  172. 172.
    Je C-H, Kim KJ (2004) Sens Actuators A 112(1):107CrossRefGoogle Scholar
  173. 173.
    Kim J, Yun S, Lee S (2008) J Intell Mater Syst Struct 19(3):417CrossRefGoogle Scholar
  174. 174.
    Weigel P, Fink H, Frigge K, Schwarz W (2001) Process of manufacturing orientated cellulose films. EP Patent 0,766,709Google Scholar
  175. 175.
    Sweetnam P, Taylor S, Elwood P (1987) Br Med J 44(4):220Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tim Huber
    • 1
  • Jörg Müssig
    • 2
  • Owen Curnow
    • 3
  • Shusheng Pang
    • 4
  • Simon Bickerton
    • 5
  • Mark P. Staiger
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department for BiomimeticsUniversity of Applied Sciences BremenBremenGermany
  3. 3.Department of ChemistryUniversity of CanterburyChristchurchNew Zealand
  4. 4.Department of Chemical and Process EngineeringUniversity of CanterburyChristchurchNew Zealand
  5. 5.Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand

Personalised recommendations