Journal of Materials Science

, Volume 47, Issue 3, pp 1262–1267 | Cite as

An XPS study of the fluorination of carbon anodes in molten NaF–AlF3–CaF2

Materials in New Zealand

Abstract

In the Hall–Héroult process for aluminum production electrolysis takes place in molten cryolite (NaF–AlF3–CaF2) with carbon electrodes. Dewetting of the anode leads to operational instability. A surface energy change due to surface fluorocarbon formation during electrolysis is suggested as a contributing factor to diminishing the wettability of the anode. In this work the surface composition of graphite anodes after electrolysis in molten NaF–AlF3–CaF2 is investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) for evidence of fluorination. Fluorocarbon is identified on an electropolished region of an anode surface resulting from anode effect. The discovery of surface fluorination provides an insight into high temperature electrochemical reactions of carbon with molten fluoride salts and informs aluminum smelter cell operation.

References

  1. 1.
    Thonstad J, Fellner P, Haarberg GM, Híveš J, Kvande H, Sterten Å (2001) Aluminium electrolysis. Aluminium-Verlag, DüsseldorfGoogle Scholar
  2. 2.
    Vogt H (1997) Electrochim Acta 42:2695CrossRefGoogle Scholar
  3. 3.
    Vogt H (1999) J Appl Electrochem 29:779CrossRefGoogle Scholar
  4. 4.
    Vogt H, Thonstad J (2002) J Appl Electrochem 32:241CrossRefGoogle Scholar
  5. 5.
    Robert E, Olsen JE, Danek V, Tixhon E, Ostvold T, Gilbert B (1997) J Phys Chem B 101:9447CrossRefGoogle Scholar
  6. 6.
    Picard GS, Bouyer FC, Leroy M, Bertaud Y, Bouvet S (1997) Theochem J Mol Struc 368:67CrossRefGoogle Scholar
  7. 7.
    Metson JB, Haverkamp RG, Hyland MM, Chen JX (2002) Light Met 239Google Scholar
  8. 8.
    Tabereaux AT, Richards NE, Satchel CE (1995) Light Met 325Google Scholar
  9. 9.
    Dorreen MMR, Chin DL, Lee JKC, Hyland MM, Welch BJ (1998) Light Met 311Google Scholar
  10. 10.
    Utigard T, Toguri JM, Ip SW (1988) Light Met 703Google Scholar
  11. 11.
    Zhuxian Q, Liman F, Grjotheim K (1986) Light Met 483Google Scholar
  12. 12.
    Lae E, Sahajwalla V, Welch B, Skyllas-Kazacos M (2005) J Appl Electrochem 35:199CrossRefGoogle Scholar
  13. 13.
    Meunier P, Welch B, Skyllas-Kazacos M, Sahajwalla V (2009) J Appl Electrochem 39:837CrossRefGoogle Scholar
  14. 14.
    Vogt H, Thonstad J (2002) Light Met 495Google Scholar
  15. 15.
    Crassous I, Groult H, Lantelme F, Devilliers D, Tressaud A, Labrugere C, Dubois M, Belhomme C, Colisson A, Morel B (2009) J Fluorine Chem 130:1080CrossRefGoogle Scholar
  16. 16.
    Groult H, Devilliers D, Vogler M, Marcus P, Nicolas F (1997) J Electrochem Soc 144:3361CrossRefGoogle Scholar
  17. 17.
    Groult H, Lantelme F, Crassous I, Labrugere C, Tressaud A, Belhomme C, Colisson A, Morel B (2007) J Electrochem Soc 154:C331CrossRefGoogle Scholar
  18. 18.
    Nakajima T (ed) (1995) Fluorine-carbon and fluoride-carbon materials: chemistry, physics, and applications. Marcel Dekker, New YorkGoogle Scholar
  19. 19.
    Root MJ, Dumas R, Yazami R, Hamwi A (2001) J Electrochem Soc 148:A339CrossRefGoogle Scholar
  20. 20.
    Thonstad J, Nordmo F, Vee K (1973) Electrochim Acta 18:27CrossRefGoogle Scholar
  21. 21.
    Landolt D (1987) Electrochim Acta 32:1CrossRefGoogle Scholar
  22. 22.
    Fairley N, Carrick A (2005) The casa cookbook. Part 1: recipes for XPS data processing. Acolyte Science, KnutsfordGoogle Scholar
  23. 23.
    Lee AY, Blakeslee DM, Powell CJ, Rumble JR (2002) Data Sci J 1:1CrossRefGoogle Scholar
  24. 24.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden PrairieGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations