Journal of Materials Science

, Volume 47, Issue 3, pp 1187–1195 | Cite as

Moisture sorption and plasticization of bloodmeal-based thermoplastics

  • Casparus J. R. VerbeekEmail author
  • Nicolas J. Koppel
Materials in New Zealand


Sorption characteristics, thermo-mechanical and mechanical properties of bloodmeal-based thermoplastics have been investigated between water activities (a w) of 0.2 and 0.8, using water and tri-ethylene glycol (TEG) as plasticizers. Three different mass ratios of TEG to water were used, 1:1, 1:2 and 5:6 with a total plasticizer content of 60 parts per hundred parts bloodmeal. It was found that the equilibrium moisture content and mechanical properties were highly dependent on relative humidity suggesting that material properties may vary during use. The BET and Flory–Huggins equations gave the best fit for desorption and adsorption, respectively, but a significant difference was observed between adsorption and desorption behaviour below a water activity of 0.6, which was thought to be due to changes in intermolecular interactions. The monolayer adsorption capacity (0.05 g/g) was unaffected by the TEG content, using the BET sorption isotherm. The water activity required to form a monolayer (a wl) was also independent of the amount of TEG, but was different for adsorption and desorption (about 0.5 and 0.2, respectively). Increasing TEG did not have a strong influence on the equilibrium moisture content, especially at low water activity. Dynamic mechanical analysis revealed that the glass transition temperature decreased almost linearly with increasing water activity, ranging between 3 and 85 °C, however, above a water activity of 0.6 a second transition was observed, most likely due to phase separation. Depending of TEG content, tensile strength increased from about 10 to 15 MPa at a water activity of 0.4, where after a drastic decrease was observed. A similar trend was observed for elongation at break. At low water activity (below 0.4) elongation was less than 3%, increasing between 30 and 50% at higher water activities. It was concluded that 10–15 wt% represented a critical point above which mechanical properties becomes very sensitive to the relative humidity of the environment.


Water Activity Dynamic Mechanical Analysis Equilibrium Moisture Content Moisture Sorption Increase Moisture Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Wallace Corporation for their support in supplying bloodmeal.


  1. 1.
    Verbeek CJR, van den Berg LE (2009) Macromol Mater Eng 295(1):10CrossRefGoogle Scholar
  2. 2.
    Verbeek C, van den Berg LE (2011) J Polym Environ 19:1. doi: 10.1007/s10924-010-0232-x CrossRefGoogle Scholar
  3. 3.
    Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE (2009) NZ Patent NZ551531Google Scholar
  4. 4.
    Vanin FM, Sobral PJA, Menegalli FC, Carvalho RA, Habitante AMQB (2005) Food Hydrocolloid 19(5):899CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Han J (2008) J Food Sci 73(7):E313. doi: 10.1111/j.1750-3841.2008.00867.x CrossRefGoogle Scholar
  6. 6.
    Su J-F, Huang Z, Zhao Y-H, Yuan X-Y, Wang X-Y, Li M (2009) Ind Crops Prod 31(2):266CrossRefGoogle Scholar
  7. 7.
    Hernandez-Izquierdo VM, Krochta JM (2008) J Food Sci 73(2):30CrossRefGoogle Scholar
  8. 8.
    Maria Martelli S, Moore G, Silva Paes S, Gandolfo C, Laurindo JB (2006) Lebensm Wiss Technol 39(3):292CrossRefGoogle Scholar
  9. 9.
    Cho SY, Rhee C (2002) Lebensm Wiss Technol 35(2):151CrossRefGoogle Scholar
  10. 10.
    Verbeek CJR, van den Berg LE (2009) Recent Pat Mater Sci 2(3):171CrossRefGoogle Scholar
  11. 11.
    Sharma S, Hodges JN, Luzinov I (2008) J Appl Polym Sci 110(1):459. doi: 10.1002/app.28601 CrossRefGoogle Scholar
  12. 12.
    Swain SN, Rao KK, Nayak PL (2004) J Appl Polym Sci 93(6):2590CrossRefGoogle Scholar
  13. 13.
    Zhang J, Mungara P, Jane J (2001) Polymer 42(6):2569CrossRefGoogle Scholar
  14. 14.
    Pommet M, Redl A, Guilbert S, Morel M-H (2005) J Cereal Sci 42(1):81CrossRefGoogle Scholar
  15. 15.
    Ortiz MER, San Martin-Martinez E, Padilla LPM (2008) Starch-Starke 60(10):577. doi: 10.1002/star.200800212 CrossRefGoogle Scholar
  16. 16.
    Hochstetter A, Talja RA, Helén HJ, Hyvönen L, Jouppila K (2006) Lebensm Wiss Technol 39(8):893CrossRefGoogle Scholar
  17. 17.
    Kristo E, Biliaderis CG (2006) Food Hydrocolloid 20(7):1057CrossRefGoogle Scholar
  18. 18.
    Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Carbohydr Polym 60(3):283CrossRefGoogle Scholar
  19. 19.
    Perdomo J, Cova A, Sandoval AJ, García L, Laredo E, Müller AJ (2009) Carbohydr Polym 76(2):305CrossRefGoogle Scholar
  20. 20.
    Fabra MJ, Talens P, Chiralt A (2009) Food Hydrocolloid 24(4):384CrossRefGoogle Scholar
  21. 21.
    Cassini AS, Marczak LDF, Noreña CPZ (2006) J Food Eng 77(1):194CrossRefGoogle Scholar
  22. 22.
    Brett B, Figueroa M, Sandoval A, Barreiro J, Müller A (2009) Food Biophys 4(3):151. doi: 10.1007/s11483-009-9112-0 CrossRefGoogle Scholar
  23. 23.
    Jangchud A, Chinnan MS (1999) Lebensm Wiss Technol 32(2):89CrossRefGoogle Scholar
  24. 24.
    Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN (2003) Carbohydr Polym 53(4):431CrossRefGoogle Scholar
  25. 25.
    Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Bioresour Technol 100(20):4742CrossRefGoogle Scholar
  26. 26.
    Sopade PA, Ajisegiri ESA, Chukwu O, Abass AB (2010) J Food Process Eng 33:385CrossRefGoogle Scholar
  27. 27.
    Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Food Bioprod Process 80(2):118CrossRefGoogle Scholar
  28. 28.
    Kim SD, Chakravarti S, Tian J, Bell P (2010) Polymer 51(10):2199CrossRefGoogle Scholar
  29. 29.
    Jonquières A, Perrin L, Arnold S, Lochon P (1998) J Membr Sci 150(1):125CrossRefGoogle Scholar
  30. 30.
    Mo XQ, Sun XZ (2001) J Am Oil Chem Soc 78(8):867CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of WaikatoHamiltonNew Zealand

Personalised recommendations