Advertisement

Journal of Materials Science

, 46:7877 | Cite as

Dissipative particle dynamics simulation on the fiber dropping process of melt electrospinning

  • Yong Liu
  • Xin Wang
  • Hua Yan
  • Changfeng Guan
  • Weimin Yang
Article

Abstract

A number of theoretical problems, such as dynamic movement of molecular chains, present themselves in melt electrospinning, yet these important issues have not been thoroughly studied. In this article, a mesoscale simulation method called dissipative particle dynamics was used to study tentatively the dynamic movement of molecular chains, seeing as the diameter of spun fibers is of nanoscale dimensions, belonging to the mesoscale domain in physics. Results show that the downward traces of melting fibers are close to those obtained experimentally, the drop velocity is closely related to electrical force, the structures of the fibers differ with changes of temperature, and chain length varies at distinct descending periods.

Keywords

Electrostatic Force Molecular Chain Dissipative Particle Dynamic Nanoscale Dimension Solution Electrospinning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Professor Ping Hu of Tsinghua University, Professor Xiaozhen Yang and Dadong Yan of the Institute of Chemistry, Chinese Academy of Science (ICCAS) for their valuable discussions.

References

  1. 1.
    Dzenis Y (2004) Science 304:1917CrossRefGoogle Scholar
  2. 2.
    Hunley M, Long T (2007) Polym Int 57:385CrossRefGoogle Scholar
  3. 3.
    Miyauchi M, Miao J, Simmons TJ, Lee JW, Doherty TV, Dordick JS, Linhardt RJ (2010) Biomacromolecules 11:2440CrossRefGoogle Scholar
  4. 4.
    Baumgarten PK (1971) J Colloid Interface Sci 36:71CrossRefGoogle Scholar
  5. 5.
    Hardick O, Stevens B, Bracewell DG (2011) J Mater Sci 46:3890. doi: 10.1007/s10853-011-5310-5 CrossRefGoogle Scholar
  6. 6.
    Hutmacher DW, Dalton PD (2011) Chem Asian J 6:44CrossRefGoogle Scholar
  7. 7.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223CrossRefGoogle Scholar
  8. 8.
    Travis J, Horst AR (2008) Biomaterials 29:1989CrossRefGoogle Scholar
  9. 9.
    Zhou FL, Gong RH, Porat I (2009) J Mater Sci 44:5501. doi: 10.1007/s10853-009-3768-1 CrossRefGoogle Scholar
  10. 10.
    Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Biomaterials 27:724CrossRefGoogle Scholar
  11. 11.
    Lyons J, Li C, Ko F (2004) Polymer 45:7597CrossRefGoogle Scholar
  12. 12.
    Zhmayev E, Cho D, Joo YL (2010) Polymer 51:4140CrossRefGoogle Scholar
  13. 13.
    McCann JT, Marquez M, Xia Y (2006) Nano Lett 6:2868CrossRefGoogle Scholar
  14. 14.
    Larrondo L, Manley RSJ (1981) J Polym Sci Polym Phys Ed 19:909CrossRefGoogle Scholar
  15. 15.
    Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Moller M (2007) Polymer 48:6823CrossRefGoogle Scholar
  16. 16.
    Deng RJ, Liu Y, Ding YM, Xie PC, Luo L, Yang WM (2009) J Appl Polym Sci 114:166CrossRefGoogle Scholar
  17. 17.
    Liu Y, Deng RJ, Hao MF, Yan H, Yang WM (2010) Polym Eng Sci 50:2074CrossRefGoogle Scholar
  18. 18.
    Zhmayev E, Cho D, Joo YL (2010) Polymer 51:274CrossRefGoogle Scholar
  19. 19.
    Kalra V, Escobedo F, Joo YL (2010) J Chem Phys 132:024901CrossRefGoogle Scholar
  20. 20.
    Groot RD, Warren PB (1997) J Chem Phys 107:4423CrossRefGoogle Scholar
  21. 21.
    Espanol P (1996) Phys Rev E 53:1572CrossRefGoogle Scholar
  22. 22.
    Symeonides V, Karmiadakis GE, Caswell B (2005) Phys Rev Lett 95:076001CrossRefGoogle Scholar
  23. 23.
    Li XJ, Deng MG, Liu Y, Liang HJ (2008) J Phys Chem B 112:14762CrossRefGoogle Scholar
  24. 24.
    Spaeth JR, Dale T, Kevrekidis IG, Panagiotopoulos AZ (2011) Ind Eng Chem Res 50:69CrossRefGoogle Scholar
  25. 25.
    Liu Y, Kong B, Yang X (2005) Polymer 46:2811CrossRefGoogle Scholar
  26. 26.
    Liu Y, Yang X, Yang M, Li T (2004) Polymer 45:6985CrossRefGoogle Scholar
  27. 27.
    Freire JJ, Rubio AM (2008) Polymer 49:2762CrossRefGoogle Scholar
  28. 28.
    Ibergay C, Malfreyt P, Tildesley DJ (2009) J Chem Theory Comput 5:3245CrossRefGoogle Scholar
  29. 29.
    Liu Y, An Y, Yan H, Guan CF, Yang WM (2010) J Polym Sci B Polym Phys 48:2484CrossRefGoogle Scholar
  30. 30.
    Groot RD (2003) J Chem Phys 118:11265CrossRefGoogle Scholar
  31. 31.
    Gonzalez-Melchor M, Mayoral E, Velazquez ME, Alejandre J (2006) J Chem Phys 125:224107/1CrossRefGoogle Scholar
  32. 32.
    Duan HW (2008) Design of high-voltage electrospinning machine and optimizing of electrostatic field. Ph.D. Thesis, Northeast Forestry University, ChinaGoogle Scholar
  33. 33.
  34. 34.
    Service RF (2010) Science 328:304CrossRefGoogle Scholar
  35. 35.
    Chaudhri A, Lukes JR (2009) ASME J Heat Transf 131:033108CrossRefGoogle Scholar
  36. 36.
    Abu-Nada E (2010) Mol Simul 36:382CrossRefGoogle Scholar
  37. 37.
    Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Polymer 48:6913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yong Liu
    • 1
  • Xin Wang
    • 1
  • Hua Yan
    • 1
  • Changfeng Guan
    • 1
  • Weimin Yang
    • 1
  1. 1.College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations