Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7815–7821 | Cite as

Ion conduction in vanadium-substituted LiSn2P3O12 electrolyte nanomaterials

  • R. Norhaniza
  • R. H. Y. Subban
  • N. S. Mohamed
Article

Abstract

LiSn2P3 − yVyO12 powders with y = 0.2, 0.4, 0.6, and 0.8 are prepared by mechanochemical milling method. The pellets of the compounds are heat treated at temperatures between 700 to 1,000 °C for sintering period of 8 h. X-ray diffraction analysis indicates that all samples consist of rhombohedral crystalline LiSn2P3O12 phase. Energy dispersive X-ray analysis confirmed that V5+ has been successfully substituted into LiSn2P3O12 crystalline phase. The conductivities of the pellets are determined using impedance spectroscopy. Impedance analysis shows enhancement in both bulk and grain boundary conductivities with increase in y. The enhancement in bulk conductivity is due to decrease in bulk activation energy reflecting an increase in ion mobility as a result of an increase in bottleneck size. Enhancement in grain boundary conductivity is attributed to increase in the number of conducting pathways due to an increase in crystallite homogeneity.

Keywords

SnO2 Transference Number Impedance Plot Vanadium Content Boundary Conductivity 

References

  1. 1.
    Goodenough JB, Hong HYP, Kafalas JA (1976) Mater Res Bull 11:203CrossRefGoogle Scholar
  2. 2.
    Leo CJ, Chowdari BVR, Rao GVS, Souquet JL (2002) Mater Res Bull 37:1419CrossRefGoogle Scholar
  3. 3.
    Kumar PP, Yashonath S (2006) J Chem Sci 118:135CrossRefGoogle Scholar
  4. 4.
    Taoufik I, Haddad M, Brochu R, Berger R (1999) J Mater Sci 34:2943. doi: https://doi.org/10.1023/A:1016064913446 CrossRefGoogle Scholar
  5. 5.
    Berry FJ, Costantini N, Smart LE (2006) Solid State Ionics 177:2889CrossRefGoogle Scholar
  6. 6.
    Anantharamulu N, Rao KK, Rambabu G, Kumar BV, Radha V, Vithal M (2011) J Mater Sci 46:2821. doi: https://doi.org/10.1007/s10853-011-5302-5 CrossRefGoogle Scholar
  7. 7.
    Juarez AM, Jimenez R, Martin PD, Ibanez J, Rojo JM (1997) J Phys Condens Matter 9:4119CrossRefGoogle Scholar
  8. 8.
    Lazarraga MG, Ibañez J, Tabellout M, Rojo JM (2004) Compos Sci Technol 64(5):759CrossRefGoogle Scholar
  9. 9.
    Norhaniza R, Subban RHY, Mohamed NS (2010) Adv Mater Res 129–131:338CrossRefGoogle Scholar
  10. 10.
    Ward BJ, Liu CC, Hunter GW (2003) J Mater Sci 21:4289. doi: https://doi.org/10.1023/A:1026374830114 CrossRefGoogle Scholar
  11. 11.
    Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Angelo PC (2007) J Mater Sci 42:5470. doi: https://doi.org/10.1007/s10853-006-0983-x CrossRefGoogle Scholar
  12. 12.
    Aboulaich A, Conte DE, Fourcade JO, Jordy C, Willmann P, Jumas JC (2010) J Power Sources 195:3316CrossRefGoogle Scholar
  13. 13.
    Orliukas AF, Dindune A, Kanepe Z, Ronis J, Bagdonas B, Kezionis A (2006) Electrochim Acta 51:6194CrossRefGoogle Scholar
  14. 14.
    Sobiestianskas R, Dindune A, Kanepe Z, Ronis J, Kezionis A, Kazakevicius E, Orliukas A (2000) Mater Sci Eng B 76:184CrossRefGoogle Scholar
  15. 15.
    Cretin M, Fabry P (1999) J Eur Ceram Soc 19:2931CrossRefGoogle Scholar
  16. 16.
    Godichemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler L, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) J Mater Res 9:1228CrossRefGoogle Scholar
  17. 17.
    Koteswara KR, Rambabu G, Raghavender M, Prasad G, Kumar GS, Vithal M (2005) Solid State Ionics 176:2701CrossRefGoogle Scholar
  18. 18.
    Juarez AM, Pecharroman C, Iglesias JE, Rojo JM (1998) J Phys Chem 102:372CrossRefGoogle Scholar
  19. 19.
    Winand JM, Rulmont A, Tarte P (1991) J Solid State Chem 93:341CrossRefGoogle Scholar
  20. 20.
    Best AS, Newman PJ, MacFarlane DR, Nairn KM, Wong S, Forsyth M (1999) Solid State Ionics 126:191CrossRefGoogle Scholar
  21. 21.
    Chang CM, Lee Y, Hong SH (2005) J Am Ceram Soc 88(7):1803CrossRefGoogle Scholar
  22. 22.
    Fu J (1997) Solid State Ionics 104:191CrossRefGoogle Scholar
  23. 23.
    Mei A, Jiang QH, Lin YH, Nan CW (2009) J Alloys Compd 486:871CrossRefGoogle Scholar
  24. 24.
    Kawai H, Kuwano J (1994) J Electrochem Soc L78:141Google Scholar
  25. 25.
    Chowdari BVR, Radhakrishnan K, Thomas KA, Subba Rao GVL (1989) Mater Res Bull 24(2):221CrossRefGoogle Scholar
  26. 26.
    Sugantha M, Varadaraju UV (1997) Solid State Ionics 95:201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. Norhaniza
    • 1
  • R. H. Y. Subban
    • 2
  • N. S. Mohamed
    • 3
  1. 1.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Faculty of Applied SciencesUniversiti Teknologi MARASelangorMalaysia
  3. 3.Centre for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations