Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7799–7805 | Cite as

A practical model for the determination of transport parameters in semiconductors

  • J. B. Rojas-Trigos
  • A. Calderón
  • E. Marín
Article
  • 122 Downloads

Abstract

In this paper a new and practical model for the determination of transport parameters of crystalline semiconductors, by means of the photoacoustic technique is reported. The model is based on the calculation of the photoacoustic signal for the so-called heat transmission configuration, and considers that the thermal response to periodical heating, due to light absorption, in semiconductor materials has mainly two contributions: (a) the vibrations of the crystal lattice (phonon contribution) and (b) the diffusion and recombination (bulk and superficial) of the photogenerated charge carriers. Considering these contributions as the heat sources, and using unmixed Dirichlet and Neumann boundary conditions, the solution of the heat diffusion equation, necessary for the calculation of the photoacoustic signal is obtained. In addition, an expression—describing a particular transport regime—that can be used as practical fitting function, for the more available experimental conditions, is developed. Finally, values of transport parameters for silicon wafers are obtained by fitting this model to the experimental data, showing a good agreement with the values quoted in literature.

Keywords

Acoustic Pressure Photogenerated Carrier Photoacoustic Signal Thermal Effusivity Photogenerated Charge Carrier 

Notes

Acknowledgements

This work was supported in part by Consejo Nacional de Ciencia y Tecnología (CONACYT), México, Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (SIP-IPN) and Comisión de Operación y Fomento de Actividades Académicas del Instituto Politécnico Nacional (COFAA-IPN), México.

References

  1. 1.
    Rosencwaig A, Gersho A (1976) J Appl Phys 47:64CrossRefGoogle Scholar
  2. 2.
    Miranda LCM (1982) Appl Opt 21(16):2923CrossRefGoogle Scholar
  3. 3.
    Fournier D, Boccara AC, Skumanich A, Amer NM (1986) J Appl Phys 59(3):787CrossRefGoogle Scholar
  4. 4.
    Cheng JC, Zhang SY, Lu YS, Wang ZQ (1992) In: Bicanic D (ed) Photoacoustic and photothermal phenomena III, vol 69. Springer-Verlag, Berlin, Heidelberg, p 423CrossRefGoogle Scholar
  5. 5.
    Pinto Neto A, Vargas H, Leite NL, Miranda LCM (1990) Phys Rev B 41(14):9971CrossRefGoogle Scholar
  6. 6.
    Dramicanin MD, Ristovski ZD, Nicolic PM, Vasiljevic DG, Todorovic DM (1995) Phys Rev B 51(20):14226CrossRefGoogle Scholar
  7. 7.
    González-T MA, Cruz-Orea A, Albor-A M de L, Castillo-A F de L (2005) Thin Solids Films 480–481:358Google Scholar
  8. 8.
    Todorovic DM, Nikolic PM (1997) Opt Eng 36(2):432CrossRefGoogle Scholar
  9. 9.
    Marín E, Riech I, Díaz P, Alvarado-Gil JJ, Mendoza-Alvarez JG, Vargas H, Cruz-Orea A, Vargas M (1998) Phys Status Solidi a 169:275CrossRefGoogle Scholar
  10. 10.
    Marín E, Calderón A, Riech I (2009) In: Marín Moares E (ed) Thermal wave physics and related photothermal techniques: basic principles and recent developments. Transworld Research Network, Kerala, India, p 159Google Scholar
  11. 11.
    Calderón A, Muñoz Hernández RA, Tomás SA, Cruz-Orea A, Sánchez Sinencio F (1998) J Appl Phys 84(11):6327CrossRefGoogle Scholar
  12. 12.
    Touloukian YS, Powell RW, Ho CY, Nicolau MC (1973) Thermo-physical properties of matter, vol 10. IFI/Plenum, New York, p 160Google Scholar
  13. 13.
    Grove AS (1964) Physics and technology of semiconductor devices. Wiley, New York, p 102Google Scholar
  14. 14.
    Sze SM (1969) Physics and technology of semiconductor devices. Wiley, New York, p 57Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, del Instituto Politécnico NacionalCol. IrrigaciónMéxico

Personalised recommendations