Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7784–7792 | Cite as

Structural properties and kinetics of nitro-niobized steels

  • Saduman Sen
  • Kadir Kocaman
Article

Abstract

In the present study, structural characterization and kinetics of nitro-niobized AISI 1010, AISI D2, and AISI M2 steels by thermo-reactive deposition technique in the powder mixture consisting of ferro-niobium, ammonium chloride, and alumina at the temperatures of 1173, 1273, and 1373 K for 60–240 min were investigated. The thickness of the niobium nitride layers formed on the nitro-niobized AISI 1010, AISI D2, and AISI M2 steels are ranged from 2.80 ± 0.90 to 11.89 ± 1.10 μm, 3.16 ± 0.60 to 13.16 ± 1.51 μm, and 3.85 ± 0.91 to 16.77 ± 2.10 μm, respectively. The phases formed in the coating layer deposited on the surface of the steel substrates are NbN0.95 and Nb2CN. The hardness of the niobium nitride coating layers produced on AISI 1010, AISI D2, and AISI M2 steels are changing from 1151 ± 126 to 1446 ± 121 HV0.005, 1359 ± 413 to 1594 ± 761 HV0.005, and 1321 ± 51 to 1915 ± 134 HV0.005, respectively. Diffusion constants of the coating layers were changing between 1.517 × 10−15 and 2.043 × 10−14 m2/s, depending on steel compositions, treatment time and temperatures, and activation energies of the AISI 1010, AISI D2, and AISI M2 steels for the process were calculated as 128.7, 123.8, and 132.5 kJ/mol, respectively. Moreover, an attempt was made to investigate the possibility of predicting the contour diagram of niobium nitride coating thickness variation, depending on process time and temperature.

Keywords

Niobium Coating Layer Growth Rate Constant Steel Composition Uncoated Steel 

References

  1. 1.
    Ma J, Du Y, Qian Y (2005) J Alloys Compd 389:296CrossRefGoogle Scholar
  2. 2.
    Elangovan T, Kuppusami P, Thirumurugesan R, Ganesan V, Mohandas E, Mangalaraj D (2010) Mater Sci Eng B 167:17CrossRefGoogle Scholar
  3. 3.
    Hultman L (2000) Vacuum 57:1CrossRefGoogle Scholar
  4. 4.
    Bendavid A, Martin PJ, Kinder TJ, Preston EW (2003) Surf Coat Technol 163–164:347CrossRefGoogle Scholar
  5. 5.
    Rodil SE, Olaya JJ, Muhl S, Bhushan B, Wei G (2007) Surf Coat Technol 201:6117CrossRefGoogle Scholar
  6. 6.
    Fenker M, Balzer M, Büchi RV, Jehn HA, Kappl H, Lee JJ (2003) Surf Coat Technol 163–164:169CrossRefGoogle Scholar
  7. 7.
    Torche M, Schmerber G, Guemmaz M, Mosser A, Parlebas JC (2003) Thin Solid Films 436:208CrossRefGoogle Scholar
  8. 8.
    Barshilia HC, Deepthi B, Rajam KS, Bhatti KP, Chaudhary S (2008) J Mater Res 23:1258CrossRefGoogle Scholar
  9. 9.
    Benkahoul M, Martinez E, Karimi A, Sanjinés R, Lévy F (2004) Surf Coat Technol 180–181:178CrossRefGoogle Scholar
  10. 10.
    Sandu CS, Benkahoul M, Parlinska WM, Sanjinés R, Lévy F (2006) Surf Coat Technol 200:6544CrossRefGoogle Scholar
  11. 11.
    Klingenberg ML, Demaree JD (2001) Surf Coat Technol 146–147:243CrossRefGoogle Scholar
  12. 12.
    Cappuccio G, Gambardella U, Morone A, Orlando S, Parisi GP (1997) Appl Surf Sci 109–110:399CrossRefGoogle Scholar
  13. 13.
    Sproul WD (1996) Surf Coat Technol 81:1CrossRefGoogle Scholar
  14. 14.
    Rutherford KL, Hatto PW, Davies C, Hutchings IM (1996) Surf Coat Technol 86–87:472CrossRefGoogle Scholar
  15. 15.
    Sen S, Sen U, Bindal C (2005) Surf Coat Technol 191:274CrossRefGoogle Scholar
  16. 16.
    Elers KE, Saanila V, Soininen PJ, Li WM, Kostamo JT, Haukka S, Juhanoja J, Besling WFA (2002) Chem Vapor Depos 8(4):149CrossRefGoogle Scholar
  17. 17.
    Katsura M (1992) J Alloys Compd 182(1):91CrossRefGoogle Scholar
  18. 18.
    Newport AC, Bleau JE, Carmalt CJ, Parkin IP, O’Neill SA (2004) J Mater Chem 14:3333CrossRefGoogle Scholar
  19. 19.
    Harjanto lS, Shibayama A, Sato K, Suzuki G, Otomo T, Takasaki Y, Fujita T (2005) Resour Process 52:113CrossRefGoogle Scholar
  20. 20.
    Sato N, Nanjo M (1985) Metallurg Trans B 16B:639CrossRefGoogle Scholar
  21. 21.
    Dutta B, Sellars CM (1987) Mater Sci Technol 3:197CrossRefGoogle Scholar
  22. 22.
    King PC, Reynoldson RW, Brownrigg A, Long JM (2004) J Mater Eng Perform 13(4):431CrossRefGoogle Scholar
  23. 23.
    Aghaie-Khafri M, Fazlalipour F (2008) Surface Coat Technol 202:4107CrossRefGoogle Scholar
  24. 24.
    Pei XJ, Zhen-Ming H, Shao-Bo F (1990) Materialwissenschaft und Werkstofftechnik 21(7):287CrossRefGoogle Scholar
  25. 25.
    Brauner G (1962) Metal Sci Heat Treat 4(5–6):210Google Scholar
  26. 26.
    Wong MS, Sproul WD, Chu X, Barnet SA (1993) J Vac Sci Technol A 11(4):1528CrossRefGoogle Scholar
  27. 27.
    Sen U, Sen S, Yilmaz F (2004) Surf Coat Technol 176:222CrossRefGoogle Scholar
  28. 28.
    Ozbek I, Bindal C (2002) Surf Coat Technol 154:14CrossRefGoogle Scholar
  29. 29.
    Tsipas DN, Rus J (1987) J Mater Sci Lett 6:118CrossRefGoogle Scholar
  30. 30.
    Deniz G (2004) MSc Thesis, Sakarya University, Graduate School of Science, SakaryaGoogle Scholar
  31. 31.
    Fujita N, Bhadeshia HKDH (1999) Mater Sci Technol 15(6):627CrossRefGoogle Scholar
  32. 32.
    Sen U (2004) Mater Chem Phys 86:189CrossRefGoogle Scholar
  33. 33.
    Chen FS, Wang KL (1999) Surf Coat Technol 115:239CrossRefGoogle Scholar
  34. 34.
    Bouayad A, Gerometta CH, Belkebir A, Ambari A (2003) Mater Sci Eng A 363:53CrossRefGoogle Scholar
  35. 35.
    Meléndez E, Campos I, Rocha E, Barrón MA (1997) Mater Sci Eng A 234–236:900CrossRefGoogle Scholar
  36. 36.
    Brakman CM, Gommers AWJ, Mittemeijer EJ (1989) J Mater Res 4–6:1354CrossRefGoogle Scholar
  37. 37.
    Genel K, Ozbek I, Kurt A, Bindal C (2002) Surf Coat Technol 160:38CrossRefGoogle Scholar
  38. 38.
    Wei CY, Chen FS (2005) Mater Chem Phys 91:192CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials EngineeringSakarya University, Engineering FacultySakaryaTurkey

Personalised recommendations