Journal of Materials Science

, Volume 46, Issue 24, pp 7770–7775 | Cite as

Controllable white light emission from Dy3+–Eu3+ co-doped KCaBO3 phosphor

  • Subrata Das
  • A. Amarnath Reddy
  • S. Surendra Babu
  • G. Vijaya Prakash


Potassium calcium borate, KCaBO3:Eu3+ phosphors with various Dy3+ concentrations (0–3 wt%) were synthesized by solid state reaction and studied for the first time. Under various UV–violet excitations, the obtained single monoclinic phased Dy3+–Eu3+ co-doped KCaBO3 polycrystalline phosphors emit a combination of yellow–blue and red–orange wavelength giving intense white light, which can easily be controlled by varying the concentration of Dy3+. The increase in white light emission with the increase of Dy3+ concentration indicates the efficient energy inter-ion transfer from Dy3+ to Eu3+ ions. Furthermore, the observed emission lifetimes and the intense white light emission are suggestive exploration for the present phosphor for potential optoelectronic applications such as white light-emitting phosphor for blue LEDs chips.


Li2B4O7 White Light Emission Plasma Display Panel Colorimetric Purity High Color Rendition Index 


  1. 1.
    Green WH, Le KP, Grey J, Au TT, Sailor MJ (1997) Science 276:1826CrossRefGoogle Scholar
  2. 2.
    Wang B, Sun L, Ju H (2010) Sol State Commun 150:1460CrossRefGoogle Scholar
  3. 3.
    Li P, Wang Z, Yang Z, Guo Q, Li X (2010) J Lumin 130:222CrossRefGoogle Scholar
  4. 4.
    Kuo CH, Sheu JK, Chang SJ, Su YK, Wu LW, Tsai JM, Liu CH, Wu RK (2003) Jpn J Appl Phys 42:2284CrossRefGoogle Scholar
  5. 5.
    Kim JS, Jeon PE, Choi JC, Park HL, Mho SI, Kim GC (2004) Appl Phys Lett 84:2931CrossRefGoogle Scholar
  6. 6.
    Kim JS, Kang JY, Jeon PE, Chol JC, Park HL, Kim TW (2004) Jpn J Appl Phys 43:989CrossRefGoogle Scholar
  7. 7.
    Kim JS, Kang JY, Jeon PE, Park YH, Choi JC, Park HL, Kim GC, Kim TW (2004) Appl Phys Lett 85:3696CrossRefGoogle Scholar
  8. 8.
    Rui Z, Xiang W (2011) J Alloys Compd 509:1197CrossRefGoogle Scholar
  9. 9.
    Wu ZC, Liu J, Hou WG, Xu J, Gon ML (2010) J Alloys Compd 498:139CrossRefGoogle Scholar
  10. 10.
    Li P, Wang Z, Yang Z, Guo Q (2010) J Rare Earths 28:523CrossRefGoogle Scholar
  11. 11.
    Li P, Wang Z, Yang Z, Guo Q, Fu G, Li XZ, Xu YP (2009) Mater Res Bull 44:2068CrossRefGoogle Scholar
  12. 12.
    Das S, Amarnath Reddy A, Vijaya Prakash G (2011) Chem Phys Lett 504:206CrossRefGoogle Scholar
  13. 13.
    Wu L, Zhang Y, Kong YF, Sun TQ, Xu JJ, Chen XL (2007) Inorg Chem 46:5207CrossRefGoogle Scholar
  14. 14.
    Wu L, Chen XL, Li H, He M, Xu YP, Li XZ (2005) Inorg Chem 44:6409CrossRefGoogle Scholar
  15. 15.
    Guoqing Z, Jun X, Xingda C, Heyu Z, Siting W, Ke X, Peizhen D, Fuxi G (1998) J Cryst Growth 191:517CrossRefGoogle Scholar
  16. 16.
    Ogorodnikov IN, Kuznetsov AY, Kruzhalov AV, Maslov VA (1995) Rad Meas 24:423CrossRefGoogle Scholar
  17. 17.
    Keszler DA, Tu JM (1995) Mater Res Bull 30:209CrossRefGoogle Scholar
  18. 18.
    Hu ZG, Higashiyama T, Yoshimura M, Mori Y, Sasaki T (2000) J Cryst Growth 212:368CrossRefGoogle Scholar
  19. 19.
    Aka G, Mougel F, Augé F, Harari AK, Vivien D, Bénitez JM, Salin F, Pelenc D, Balembois F, Georges P, Brun A, Nain NL, Jacquet M (2000) J Alloy Comp 303–304:401CrossRefGoogle Scholar
  20. 20.
    Guifang L, Quanxi C, Zhimin L, Yunxia H (2008) J Rare Earths 26:792CrossRefGoogle Scholar
  21. 21.
    Petrov V, Rotermund F, Noack F, Komatsu R, Sugawara T, Uda S (1998) J Appl Phys 84:5887CrossRefGoogle Scholar
  22. 22.
    Kutomi Y, Khrmta MH, Durrani SA (1995) Rad Meas 24:407CrossRefGoogle Scholar
  23. 23.
    Furetta C, Kitis G, Weng PS, Chu TC (1999) Nucl Instrum Methods A 420:441CrossRefGoogle Scholar
  24. 24.
    Dhoble SJ, Moharil SV (1999) Nucl Instrum Methods B 160:274CrossRefGoogle Scholar
  25. 25.
    Knitel MJ, Hommels B, Dorenbos P, van Eijk CWE, Berezovskaya I, Dotsenko V (2000) Nucl Instrum Methods A 449:595CrossRefGoogle Scholar
  26. 26.
    Holsa J, Leskela M (1991) J Lumin 48–49:497CrossRefGoogle Scholar
  27. 27.
    Knitel MJ, Dorenbos P, Andriessen J, van Eijk CWE, Berezovskaya I, Dotsenko V (1998) Rad Meas 29:327CrossRefGoogle Scholar
  28. 28.
    Srivastava AM, Doughty DA, Beers WW (1996) J Electrochem Soc 143:4113CrossRefGoogle Scholar
  29. 29.
    Smets BMJ (1991) Mater Chem Phys 16:283CrossRefGoogle Scholar
  30. 30.
    Saakes M, Leskela M, Blasse G (1984) Mater Res Bull 19:151CrossRefGoogle Scholar
  31. 31.
    Machid K, Adachi G, Shiokawa J (1979) J Lumin 21:101CrossRefGoogle Scholar
  32. 32.
    Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag, BerlinCrossRefGoogle Scholar
  33. 33.
    Chaminade JP, Garcia A, Pouchard M, Fouassier C, Jacquier B, Gallix DP, Mestres LG (1990) J Cryst Growth 99:799CrossRefGoogle Scholar
  34. 34.
    Kwon IE, Yu BY, Bae H, Hwang YJ, Kwon TW, Kim CH, Pyun CH, Kim SJ (2000) J Lumin 87:1039CrossRefGoogle Scholar
  35. 35.
    Schlaeger M, Hoppe MRZ (1997) Anorg Allg Chem 619:976CrossRefGoogle Scholar
  36. 36.
    Yang HC, Li CY, He H, Tao Y, Xu JH, Su Q (2006) J Lumin 118:61CrossRefGoogle Scholar
  37. 37.
    Yanlin H, Seo HJ (2011) J Electrochem Soc 158:215Google Scholar
  38. 38.
    Vijaya Prakash G, Jagannathan R (1999) Spectrochim Acta A 55:1799CrossRefGoogle Scholar
  39. 39.
    Amarnath Reddy A, Chandra Sekhar M, Pradeesh K, Surendra Babu S, Vijaya Prakash G (2011) J Mater Sci 46:2018. doi: CrossRefGoogle Scholar
  40. 40.
    Bhaskar R, Lakshmanan AR, Sundarrajan M, Ravishankar T, Jose MT, Lakshminarayan N (2009) Indian J Pure Appl Phys 47:772Google Scholar
  41. 41.
    Qin C, Huang Y, Chen G, Shi L, Qiao X, Gan J, Seo HJ (2009) Mater Lett 63:1162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nanophotonics Laboratory, Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Laser Instrumentation Design Centre, Instrument Research and Development EstablishmentDehradunIndia

Personalised recommendations