Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7760–7769 | Cite as

Impact of synthesis conditions on meso- and macropore structures of resorcinol–formaldehyde xerogels

  • Ahmed Awadallah-F
  • Ahmed M. Elkhatat
  • Shaheen A. Al-Muhtaseb
Article

Abstract

Xerogels were prepared by the sol–gel polymerization of resorcinol with formaldehyde at different conditions. The effects of different synthesis factors (namely, resorcinol-to-formaldehyde ratio, resorcinol-to-water ratio, resorcinol-to-catalyst ratio, and initial solution pH) on the surface areas, pore volumes, pore size distributions, and adsorption capacity of liquid nitrogen were studied. Factorial design was also used to investigate the relative significance of these factors on the resulting xerogels properties, and the possible interactions between them. The mean effects of the most significant factors and factor interactions on determining the pore structures and adsorption capacities were evaluated. The synthesized xerogels were characterized by Fourier transmission infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, and surface area analyzer. The results showed that surface areas, pore size distributions, and nitrogen adsorption capacity are dependent completely on the recipes used to prepare the xerogels. Pore structure results put xerogel samples as candidates for adsorption technology, ultra-filtration, and nano-filtration fields based on pore sizes and pore volume scales.

Keywords

Adsorption Capacity Pore Volume Resorcinol Total Surface Area Total Pore Volume 

Notes

Acknowledgements

This publication was made possible by the support of an NPRP grant from the QNRF. The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    Mahata N, Pereira MFR, Suárez-García F, Martínez-Alonso A, Tascón JMD, Figueiredo JL (2008) J Colloid Interface Sci 324:150CrossRefGoogle Scholar
  2. 2.
    Pekala RW (1989) J Mater Sci 24:3221. doi: https://doi.org/10.1007/BF01139044 CrossRefGoogle Scholar
  3. 3.
    Liu B, Creager S (2010) J Power Sources 195:1812CrossRefGoogle Scholar
  4. 4.
    Wen Y, Shen Z (2001) Carbon 39:2369CrossRefGoogle Scholar
  5. 5.
    Czakkel O, Marthi K, Geissler E, László K (2005) Microporous Mesoporous Mater 86:124CrossRefGoogle Scholar
  6. 6.
    Zhao H, Zhu Y, Li W, Hu H (2008) New Carbon Mater 23:361Google Scholar
  7. 7.
    Lee YJ, Jung JC, Yi J, Baeck S, Yoon JR, Song IK (2010) Curr Appl Phys 10:682CrossRefGoogle Scholar
  8. 8.
    Li J, Wang X, Wang Y, Huang Q, Dai C, Gamboa S, Sebastian PJ (2008) J Non-Cryst Solids 354:19CrossRefGoogle Scholar
  9. 9.
    Zheivot VI, Molchanov VV, Zaikovskii VI, Krivoruchko VN, Zaitseva NA, Shchuchkin MN (2010) Microporous Mesoporous Mater 130:7CrossRefGoogle Scholar
  10. 10.
    Wang Z, Zhang X, Liu X, Lv M, Yang K, Meng J (2011) Carbon 49:161CrossRefGoogle Scholar
  11. 11.
    Job N, Panariello F, Marien J, Crine M, Pirard JP, Léonard A (2006) J Non-Cryst Solids 352:24CrossRefGoogle Scholar
  12. 12.
    Albert DF, Andrew GRs, Mendenhall RS, Bruno JW (2001) J Non-Cryst Solids 296:1CrossRefGoogle Scholar
  13. 13.
    Job N, Panariello F, Crine M, Pirard JP, Léonard A (2007) Colloids Surf A 293:224CrossRefGoogle Scholar
  14. 14.
    Shady SA (2009) J Hazard Mater 167:947CrossRefGoogle Scholar
  15. 15.
    Al-Muhtaseb SA, Ritter JA (2003) Adv Mater 15:101CrossRefGoogle Scholar
  16. 16.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, LondonGoogle Scholar
  17. 17.
    Lin C, Ritter JA (1997) Carbon 35:1271CrossRefGoogle Scholar
  18. 18.
    Zanto EJ, Al-Muhtaseb SA, Ritter JA (2002) Ind Eng Chem Res 41:3151CrossRefGoogle Scholar
  19. 19.
    Matos I, Fernandes S, Guerreiro L, Barata S, Ramos AM, Vital J, Fonseca IM (2006) Microporous Mesoporous Mater 92:38CrossRefGoogle Scholar
  20. 20.
    Horikawa T, Ono Y, Hayashi J, Muroyama K (2004) Carbon 42:2683CrossRefGoogle Scholar
  21. 21.
    Hwang SW, Hyun HS (2004) J Non-Cryst Solids 347:238CrossRefGoogle Scholar
  22. 22.
    Van der Bruggen B, Everaert K, Wilms W, Vandecasteele C (2001) J Membr Sci 193:239CrossRefGoogle Scholar
  23. 23.
    Zhu B, Clifford DA, Chellam S (2005) Water Res 39:3098CrossRefGoogle Scholar
  24. 24.
    Bierman EL, Hayes TL, Hawkins JN, Ewing AM, Lindgren FT (1966) J Lipid Res 7:65Google Scholar
  25. 25.
    Lee WH, Park JS, Sok JH, Reucroft PJ (2005) Appl Surf Sci 246:77CrossRefGoogle Scholar
  26. 26.
    González-González JF, Alexandre-Franco M, González-Garcìa CM, Encinar-Martìn JM, Bernalte-Garcìa A, Gómez-Serrano V (2009) Powder Technol 192:339CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ahmed Awadallah-F
    • 1
    • 2
  • Ahmed M. Elkhatat
    • 1
  • Shaheen A. Al-Muhtaseb
    • 1
  1. 1.Department of Chemical EngineeringQatar UniversityDohaQatar
  2. 2.National Center for Radiation Research and TechnologyNasr City, CairoEgypt

Personalised recommendations