Advertisement

Journal of Materials Science

, Volume 46, Issue 24, pp 7737–7744 | Cite as

Influence of heat treatments on toughness and sensitization of a Ti-alloyed supermartensitic stainless steel

  • G. F. da Silva
  • S. S. M. Tavares
  • J. M. Pardal
  • M. R. Silva
  • H. F. G. de Abreu
Article

Abstract

Supermartensitic steels are a new class of martensitic stainless steels developed to obtain higher corrosion resistance and better toughness through the reduction of carbon content, and addition of Ni and Mo. They were developed to more critical applications or to improve the performance obtained with conventional grades AISI 410, 420, and 431. In this study, the influences of the tempering parameters on the microstructure, mechanical properties (hardness and toughness), and sensitization of a Ti-alloyed supermartensitc stainless steel were investigated. The material showed temper embrittlement in the 400–600 °C range, as detected by low temperature (−46 °C) impact tests. The degree of sensitization measured by double loop reactivation potentiodynamic tests increased continuously with the increase of tempering temperature above 400 °C. Healing due to Cr diffusion at high tempering temperatures was not observed. Double tempered specimens showed high amounts (>20%) of reverse austenite but their toughness were similar to specimens single tempered at 625 and 650 °C.

Keywords

Austenite Impact Toughness Intergranular Corrosion Martensitic Stainless Steel Temper Embrittlement 

Notes

Acknowledgement

The authors acknowledge the Brazilian research agencies (CAPES, FAPERJ and CNPq) for financial support.

References

  1. 1.
    Olden V, Thaulow C, Johnsen R (2008) Mater Des 29:1934CrossRefGoogle Scholar
  2. 2.
    Kondo K, Ueda M, Oawa K, Amaya H, Hirata H, Takabe H (1999) In: Supermartensitic stainless steels ‘99’, Belgium, p 11Google Scholar
  3. 3.
    Rodrigues CAD, di Lorenzo PL, Sokolowski A, Barbosa CA, Tremiliosi-Filho G, Rollo JMAD (2006) In: 17th Congresso Brasileiro de Engenharia e Ciência dos Materiais, Foz do Iguaçu, p 2695Google Scholar
  4. 4.
    Rodrigues CAD, Lorenzo PLD, Sokolowski A, Barbosa CA, Rollo JMAD (2007) Mater Sci Eng A 460–461:149CrossRefGoogle Scholar
  5. 5.
    Pickering FB (1978) Physical metallurgy and the design of steels. Applied Science Publishers Ltd, LondonGoogle Scholar
  6. 6.
    ASM (1994) ASM speciality handbook. ASM International, Materials ParkGoogle Scholar
  7. 7.
    Čihal V, Štefec R (2001) Electrochim Acta 46:3867CrossRefGoogle Scholar
  8. 8.
    Folkhard E (1984) Welding metallurgy of stainless steels. Springer-Verlag/Wien, New YorkGoogle Scholar
  9. 9.
    SM A (1987) ASM metals handbook, vol 12, Fractography. ASM International, Materials ParkGoogle Scholar
  10. 10.
    API Recommended Practice 571 (2003) Damage mechanisms affecting fixed equipment in the refining industry, Section 4: general damage mechanisms—all industries. Americam Petroleum Institute, Washington DCGoogle Scholar
  11. 11.
    Prohaska M, Kanduth H, Mori G, Grill R, Tischler G (2010) Corros Sci 52(5):1582CrossRefGoogle Scholar
  12. 12.
    Lopez N, Cid M, Puiggali M, Azkarate I, Pelayo A (1997) Mater Sci Eng A 229(1–2):123CrossRefGoogle Scholar
  13. 13.
    Cullity BD (1978) Elements of X-ray diffraction. Addison Wesley Publishing Company, ReadingGoogle Scholar
  14. 14.
    Leffer B (2010) Stainless steels and their properties. Available in https://doi.org/www.outokumpu.com/files/Group/HR/Documents/STAINLESS20.pdf. Accessed 27 Nov 2010
  15. 15.
    Tavares SSM, da Silva FJ, Scandian C, da Silva GF, Abreu HFG (2010) Corros Sci 52(11):3835CrossRefGoogle Scholar
  16. 16.
    Carrouge D (2011) software MAP_STEEL_AC1TEMP, Phase transformation group, University of Cambridge, Department of Materials Science and Metallurgy. https://doi.org/www.msm.cam.ac.uk/map/steel/programs/ac1new.html. Accessed 4 Apr 2011
  17. 17.
    Gesnouin C, Hazarabedian A, Bruzzoni P, Ovejero-Garcia J, Bilmes P, Llorente C (2004) Corros Sci 46:1633CrossRefGoogle Scholar
  18. 18.
    Bilmes PD, Solari M, Lorente CL (2001) Mater Charact 46:285CrossRefGoogle Scholar
  19. 19.
    Nakagawa N, Miyazaki T (1999) J Mater Sci 34:3901. doi: https://doi.org/10.1023/A:1004626907367 CrossRefGoogle Scholar
  20. 20.
    Moura V, Kina AY, Tavares SSM, Lima LD, Mainier FB (2008) J Mater Sci 43:536. doi: https://doi.org/10.1007/s10853-007-1785-5 CrossRefGoogle Scholar
  21. 21.
    Kina AY, Tavares SSM, Souza JA, Abreu HFG (2008) J Mater Process Technol 199:391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. F. da Silva
    • 1
  • S. S. M. Tavares
    • 2
  • J. M. Pardal
    • 2
  • M. R. Silva
    • 3
  • H. F. G. de Abreu
    • 4
  1. 1.PETROBRAS-UO-RioRio de JaneiroBrazil
  2. 2.Departamento de Engenharia MecânicaUniversidade Federal FluminenseNiteróiBrazil
  3. 3.Instituto de CiênciasUniversidade Federal de ItajubáMinas GeraisBrazil
  4. 4.Departamento de Engenharia Metalúrgica e MateriaisUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations