Journal of Materials Science

, Volume 46, Issue 23, pp 7573–7581 | Cite as

Fatigue crack growth characteristics of a new Ni–Co-base superalloy TMW-4M3: effects of temperature and load ratio

  • Zhihong Zhong
  • Yuefeng Gu
  • Toshio Osada
  • Yong Yuan
  • Chuanyong Cui
  • Tadaharu Yokokawa
  • Toshimitsu Tetsui
  • Hiroshi Harada
Article

Abstract

The fatigue crack growth (FCG) behavior of a newly developed Ni–Co-base superalloy TMW-4M3 has been investigated in this study. Experiment was carried out in laboratory air with compact-tension specimen. The effects of temperature (400, 650, and 725 °C) and load ratio (0.05 and 0.5) on crack growth rate were studied in the Paris regime. The results revealed that the crack growth rate increased with increasing temperature under a given load ratio. The influence of load ratio on crack growth rate was pronounced, especially at higher temperature and low stress intensity factor range. Fractographic observations showed that fracture mode was transgranular at 400 °C, mixed transgranular and intergranular at 650 °C, and predominantly intergranular at 725 °C. The possible explanations for the crack growth behavior were discussed based on the degradation of mechanical properties and the oxidation assisted crack growth, as well as the crack closure effect. A comparison of FCG rate was also made between TMW-4M3 and the commercial superalloy U720Li.

References

  1. 1.
    Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Gu YF, Fukuda T, Cui CY, Harada H, Mitsuhashi A, Yokokawa T, Fujioka J, Koizumi Y, Kobayashi T (2009) Metall Mater Trans A 40:3047CrossRefGoogle Scholar
  3. 3.
    Cui CY, Gu YF, Harada H, Ping DH, Sato A (2006) Metall Mater Trans A 37:3183CrossRefGoogle Scholar
  4. 4.
    Gu YF, Cui CY, Ping DH, Harada H, Fukuda T, Fujioka J (2009) Mater Sci Eng A 510–511:250Google Scholar
  5. 5.
    Gu YF, Harada H, Cui CY, Ping DH, Sato A, Fujioka J (2006) Scr Mater 55:815CrossRefGoogle Scholar
  6. 6.
    Tucker AM, Henderson MB, Wilkinson AJ, Hide NJ, Reed PAS (2002) Mater Sci Technol 18:349CrossRefGoogle Scholar
  7. 7.
    Evans WJ, Jones JP, Williams S (2005) Int J Fatigue 27:1473CrossRefGoogle Scholar
  8. 8.
    Arslan G, Doruk M (1998) J Mater Sci 33:2653. doi:10.1023/A:1004369622557 CrossRefGoogle Scholar
  9. 9.
    Cui CY, Gu YF, Harada H, Sato A (2005) Metall Mater Trans A 36:2921CrossRefGoogle Scholar
  10. 10.
    Annual Book of ASTM Standards, E21 (2005) ASTM. West Conshohocken, PAGoogle Scholar
  11. 11.
    Annual Book of ASTM Standards, E647 (2005) ASTM. West Conshohocken, PAGoogle Scholar
  12. 12.
    Annual Book of ASTM Standards, E399 (1997) ASTM. West Conshohocken, PAGoogle Scholar
  13. 13.
    Mercer C, Shademan S, Soboyejo WO (2003) J Mater Sci 38:291. doi:10.1023/A:1021161532639 CrossRefGoogle Scholar
  14. 14.
    Dalby S, Tong J (2005) J Mater Sci 40:1217. doi:10.1007/s10853-005-6940-2 CrossRefGoogle Scholar
  15. 15.
    Tong J, Dalby S, Byrne J (2005) J Mater Sci 40:1237. doi:10.1007/s10853-005-6942-0 CrossRefGoogle Scholar
  16. 16.
    Liu HW, McGowan J (1981) Scr Metall 16:507CrossRefGoogle Scholar
  17. 17.
    Clavel M, Pineau A (1978) Metall Trans A 9:471CrossRefGoogle Scholar
  18. 18.
    Molins R, Hochstetter G, Chassaigne JC, Andrieu E (1997) Acta Mater 45:663CrossRefGoogle Scholar
  19. 19.
    Tong J, Dalby S, Byrne J, Henderson MB, Hardy MC (2001) Int J Fatigue 23:897CrossRefGoogle Scholar
  20. 20.
    Andrieu E, Molins R, Ghonem H, Pineau A (1992) Mater Sci Eng A 154:21CrossRefGoogle Scholar
  21. 21.
    Ghonem H, Nicholas T, Pineau A (1993) Fatigue Fract Eng Mater Struct 16:565CrossRefGoogle Scholar
  22. 22.
    Osinkolu GA, Onofrio G, Marchionni M (2003) Mater Sci Eng A 356:425CrossRefGoogle Scholar
  23. 23.
    King JE (1987) Mater Sci Technol 3:750Google Scholar
  24. 24.
    Ishihara S, Goshima T, Yoshimoto Y, Sabu T, Mcevily AJ (2000) J Mater Sci 35:5661. doi:10.1023/A:1004846205548 CrossRefGoogle Scholar
  25. 25.
    Suresh S (1991) Fatigue of materials. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Elber V (1971) In: Damage tolerance in aircraft structures. ASTM STP 486, PhiladelphiaGoogle Scholar
  27. 27.
    McClung RC (1991) Metall Trans A 22:1559CrossRefGoogle Scholar
  28. 28.
    Shih TT, Wei RP (1974) Eng Fract Mech 6:19CrossRefGoogle Scholar
  29. 29.
    Dubey S, Soboyejo ABO, Soboyejo AB (1997) Acta Mater 45:2777CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhihong Zhong
    • 1
  • Yuefeng Gu
    • 1
  • Toshio Osada
    • 1
  • Yong Yuan
    • 1
  • Chuanyong Cui
    • 2
  • Tadaharu Yokokawa
    • 1
  • Toshimitsu Tetsui
    • 1
  • Hiroshi Harada
    • 1
  1. 1.High Temperature Materials UnitNational Institute for Materials Science (NIMS)TsukubaJapan
  2. 2.Institute of Metal ResearchChina Academy of ScienceShenyangChina

Personalised recommendations