Journal of Materials Science

, Volume 46, Issue 20, pp 6465–6483 | Cite as

Nanoscale volume diffusion

Diffusion in thin films, multilayers and nanoobjects (hollow nanoparticles)
  • Zoltán Erdélyi
  • Dezső L. Beke


Diffusion on the nano/atomic scales in multilayers, thin films has many challenging features even if the role of structural defects (grain-boundaries, dislocations, etc.) can be neglected and 'only' the effects related to the nano/atomic scale raise. This can be the case for diffusion in amorphous materials, in epitaxial, highly ideal thin films, or multilayers where diffusion along short circuits can be ignored and 'only' fundamental difficulties related to nanoscale effects are important. The objective of this article is to review some interesting fundamental experimental and theoretical results in the field of nanoscale volume diffusion in planar and spherical geometries.


Composition Dependence Composition Profile Atom Probe Tomography Kinetic Monte Carlo Jump Frequency 



This study was supported by the OTKA Board of Hungary (Nos K67969, CK80126) and by TAMOP 4.2.1./B-09/1/KONV-2010-0007 project (implemented through the New Hungary Development Plan co-financed by the European Social Fund, and the European Regional Development Fund). One of the authors (Z. Erdélyi) of this article is a grantee of the ‘Bolyai János’ scholarship.


  1. 1.
    Fick AE (1855) Ann Phys Chem 94:59Google Scholar
  2. 2.
    Fick AE (1855) Phil Mag 10:30Google Scholar
  3. 3.
    Crank J (1975) In: The mathmatics of diffusion. Oxford Univerity Press, OxfordGoogle Scholar
  4. 4.
    Philibert J (1991) In: Atom movements: diffusion and mass transport in solids. Les Editions de Physique, Les UlisGoogle Scholar
  5. 5.
    Mehrer H (2007) In: Diffusion in solids. Springer-Verlag, BerlinGoogle Scholar
  6. 6.
    Martin G (1990) Phys Rev B 41:2279Google Scholar
  7. 7.
    Yip S (eds) (2005) In: Handbook of materials modeling. Springer, DordrechtGoogle Scholar
  8. 8.
    Stephenson G (1988) Acta Metall 36(10):2663Google Scholar
  9. 9.
    Stephenson G (1993) Def Diff Forum 95(98):507Google Scholar
  10. 10.
    Manning JR (1968) In: Diffusion kinetics for atoms in crystals D. Van Norstrand Company Inc., PrinctonGoogle Scholar
  11. 11.
    Ghez R (2001) In: Diffusion phenomena. Kulwer Academic/Plenum Publishers, New YorkGoogle Scholar
  12. 12.
    Erdélyi Z, Beke DL (2004) Phys Rev B 70:245428Google Scholar
  13. 13.
    Cook H, de Fontaine D, Hilliard J (1969) Acta Metall 17:165Google Scholar
  14. 14.
    Cahn J (1972) Acta Metall 9:795Google Scholar
  15. 15.
    Yamautchi H, Hilliard J (1972) Scr Metall 6:909Google Scholar
  16. 16.
    Tsakalakos T (1981) Thin Solid Films 86:79Google Scholar
  17. 17.
    Tsakalakos T (1986) Scr Metall 20:471Google Scholar
  18. 18.
    Memon E, de Fontaine D (1992) Scr Metall 27:395Google Scholar
  19. 19.
    Erdélyi Z, Beke D, Nemes P, Langer G (1999) Phil Mag A 79:1757Google Scholar
  20. 20.
    Mehrer, H (eds) (1990) In: Diffusion in solid metals and alloys, Landolt-Börnstein, New Series, vol III/26. Springer-Verlag, BerlinGoogle Scholar
  21. 21.
    Beke, D (eds) (1999) In: Diffusion in semiconductors and non-metallic solids, Landolt-Börnstein, New Series, vol III/33. Springer-Verlag, BerlinGoogle Scholar
  22. 22.
    Kube R, Bracht H, Hansen JL, Larsen AN, Haller E, Paul S, Lerch W (2010) J Appl Phys 10:073520Google Scholar
  23. 23.
    Bracht H (2006) Physica B 367(377):11Google Scholar
  24. 24.
    Bracht H, Haller E, Clarck-Phelps R (1998) Phys Rev Lett 81:393Google Scholar
  25. 25.
    Silvestri HH, Bracht H, Hansen JL, Larsen AN, Haller EE (2006) Semicond Sci Technol 21:172103Google Scholar
  26. 26.
    Hüger E, Tietze U, Lott D, Bracht H, Bougeard D, Haller EE, Schmidt H (2008) Appl Phys Lett 93:162104Google Scholar
  27. 27.
    Erdélyi Z, Balogh Z, Beke D (2010) Acta Mater 58:5639Google Scholar
  28. 28.
    Beke DL, Cserháti C, Erdélyi Z, Szabó IA (2003) In: Nanoclusters and nanocrystals. American Scientific Publ., CalifroniaGoogle Scholar
  29. 29.
    Csik A, Langer G, Beke D, Erdélyi Z, Menyhard M, Sulyok A (2001) J Appl Phys 89:804Google Scholar
  30. 30.
    Tripathi S, Sharma A, Shripathi T (2009) Appl Surf Sci 256:489Google Scholar
  31. 31.
    Erdélyi Z, Szabó IA, Beke DL (2002) Phys Rev Lett 89:165901Google Scholar
  32. 32.
    Erdélyi Z, Sladecek M, Stadler LM, Zizak I, Langer G, Kis-Varga M, Beke D, Sepiol B (2004) Science 306:1913Google Scholar
  33. 33.
    Erdélyi Z, Beke DL (2003) Phys Rev B 68:092102Google Scholar
  34. 34.
    Roussel JM, Bellon P (2006) Phys Rev B 73:085403Google Scholar
  35. 35.
    Klafter J, Sokolov I (2005) Phys World 18:29Google Scholar
  36. 36.
    Philibert J (2009) Int J Mater Res 100:744Google Scholar
  37. 37.
    Sokolov I, Klafter J, Blumen A (2002) Phys Today 55:48Google Scholar
  38. 38.
    Erdélyi Z, Katona GL, Beke DL (2004) Phys Rev B 69:113407Google Scholar
  39. 39.
    Beke DL, Erdélyi Z (2006) Phys Rev B (Condens Matter Mater Phys) 73:035426Google Scholar
  40. 40.
    Katona GL, Erdélyi Z, Beke DL, Dietrich C, Weigl F, Boyen HG, Koslowski B, Ziemann P (2005) Phys Rev B 71:115432Google Scholar
  41. 41.
    Erdélyi Z, Girardeaux C, Tőkei Z, Beke D, Cserháti C, Rolland A (2002) Surf Sci 496:129Google Scholar
  42. 42.
    Balogh Z, Erdélyi Z, Beke D, Wiedwald U, Pfeiffer H, Tschetschetkin A, Ziemann P (2011) Thin Solid Film (in press)Google Scholar
  43. 43.
    Balogh Z, Erdélyi Z, Beke D, Langer G, Csik A, Boyen HG, Wiedwald U, Ziemann P, Portavoce A, Girardeaux C (2008) Appl Phys Lett 92:143104Google Scholar
  44. 44.
    d’Heurle F, Gas P (1986) J Mater Res 1:205Google Scholar
  45. 45.
    Gas P, d’Heurle F (1988) In: Landolt-Börnstein new series, vol III 33A. Springer, BerilnGoogle Scholar
  46. 46.
    Nemouchi F, Mangelinck D, Berman C, Gas P (2005) Appl Phys Lett 86:041903Google Scholar
  47. 47.
    Cserháti C, Balogh Z, Csik A, Langer G, Erdélyi Z, Glodán G, Katona G, Beke D, Zizak I, Darowski N, Dudzik E, Feyerherm R (2008) J Appl Phys 104:024311Google Scholar
  48. 48.
    Portavoce A, Tréglia G (2010) Phys Rev B 82:205431Google Scholar
  49. 49.
    Erdélyi Z, Beke DL, Taranovskyy A (2008) Appl Phys Lett 92:133110Google Scholar
  50. 50.
    Beke D, Szabo I, Erdélyi Z, Opposits G (2004) Mater Sci Eng A 387(389):4Google Scholar
  51. 51.
    Geguzin Y (1979) In: Diffusion zone. Nauka, MoscowGoogle Scholar
  52. 52.
    Schmitz G, Ene C, Nowak C (2009) Acta Mater 57:2673Google Scholar
  53. 53.
    Beke D, Kozéky L, Gödény I, Kedves F (1989) Def Diff Forum 66(69):1357Google Scholar
  54. 54.
    Bokstein B, Bokstein S, Zsukhovicki A (1974) Metallurgica 66(69):169Google Scholar
  55. 55.
    Nazarov AV, Gurov KP (1974) Fiz Metall Metalloved 37:496Google Scholar
  56. 56.
    Beke DL, Erdélyi Z, Parditka B (2011) Def Diff Forum 309(310):113Google Scholar
  57. 57.
    Erdélyi Z, Parditka B, Beke D (2011) Scr Mater 64:938Google Scholar
  58. 58.
    Aldinger A (1974) Acta Metall 22:923Google Scholar
  59. 59.
    Geguzin Y, Klinchuk Y, Yu I, Paritskaya L (1977) Fiz Met Metalloved 43:602Google Scholar
  60. 60.
    Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711Google Scholar
  61. 61.
    Yin Y, Erdonmez CK, Cabot A, Hughes S, Alivisatos AP (2006) Adv Func Matt 16:1389Google Scholar
  62. 62.
    Wang CM, Baer D, Thomas L, Amonette J, Antony J, Qiang Y, Duscher G (2005) J Appl Phys 98:09430Google Scholar
  63. 63.
    Nakamura R, Lee JG, Tokozakura D, Mori H, Nakajima H (2007) Matter Lett 61:1060Google Scholar
  64. 64.
    Nakamura R, Tokozakura D, Nakajima H, Lee JG, Mori H (2007) J Apll Phys 101:074303Google Scholar
  65. 65.
    Nakamura R, Lee JG, Mori H, Nakajima H (2008) Phil Mag 88:257Google Scholar
  66. 66.
    Nakajima H, Nakamura R (2009) J Nano Res 7:1Google Scholar
  67. 67.
    Tu KN, Gosele U (2005) Appl Phys Lett 86:093111Google Scholar
  68. 68.
    Gusak AM, Zaporozhets T, Tu K, Gosele U (2005) Phil Mag 85:4445Google Scholar
  69. 69.
    Belova I, Murch G (2005) J Phase Equil Diff 26:430Google Scholar
  70. 70.
    Evteev A, Levchenko E, Belova I, Murch G (2007) Phil Mag 87:3787Google Scholar
  71. 71.
    Tokozakura RND, Lee J, Mori H, Nakajima H (2008) Acta Mater 56:5276Google Scholar
  72. 72.
    Gusak AM, Tu K (2008) Acta Mater 57:3367Google Scholar
  73. 73.
    Evteev A, Levchenko E, Belova I, Murch G (2009) J Nano Res 7:11Google Scholar
  74. 74.
    Evteev A, Levchenko E, Belova I, Murch G (2008) Phil Mag 88:1524Google Scholar
  75. 75.
    Gusak AM, Zaporozhets TV (2009) Condens Matter 21:415303Google Scholar
  76. 76.
    Glodan G, Cserhati C, Beszeda I, Beke DL (2010) Appl Phys Lett 97:113109Google Scholar
  77. 77.
    Singh A, Basu A, Bhatt P, Poswal A (2009) Phys Rev B 79:195435Google Scholar
  78. 78.
    Knaepen W, Demeulemeester J, Deduytsche D, Jordan-Sweet J, Vantomme A, Meirhaeghe RV, Detavernier C, Lavoie C (2010) Microelect Eng 87:258Google Scholar
  79. 79.
    Sterns MB (1988) Phys Rev B 38:8109Google Scholar
  80. 80.
    Fullerton EE, Schuller IK, Vanderstraeten H, Bruynseraede Y (1992) Phys Rev B 45:9292Google Scholar
  81. 81.
    DuMond J, Youtz J (1940) J Appl Phys 11:357Google Scholar
  82. 82.
    Gupta A, Gupta M, Chakravarty S, Ruffer R, Wille HC, Leupold O (2005) Phys Rev B 72:014207Google Scholar
  83. 83.
    Gupta A, Gupta M, Pietsch U, Ayachit S, Rajagopalanl S, Balamurgan A, Tyagi A (204) J Non-Cryst Solids 343:39Google Scholar
  84. 84.
    Speakman J, Rose P, Hunt J, Cowlam N, Somekh R, Greer A (1996) J Magn Magn Mater 156:411Google Scholar
  85. 85.
    Schmidt H, Gupta M, Bruns M (2006) Phys Rev Lett 96:055901Google Scholar
  86. 86.
    Gupta M, Gupta A, Stahn J, Horisberger M, Gutberlet T, Allenspach P (2004) Phys Rev B 70:184206Google Scholar
  87. 87.
    Parratt LG (1954) Phys Rev 95:359Google Scholar
  88. 88.
    Singh S, Basu S, Gupta M, Majkrzak CF, Kienzle PA (2010) Phys Rev B 81:235413Google Scholar
  89. 89.
    Cekada M, Panjan M, Cimpric D, Kovac J, Panjan P, Dolinsek J, Zalar A (2010) Vacuum 84:147Google Scholar
  90. 90.
    Lakatos A, Langer GA, Csik A, Cserháti C, Kis-Varga M, Daróczi L, Katona GL, Erdélyi Z, Erdélyi G, Vad K, Beke DL (2010) Appl Phys Lett 97(23):233103Google Scholar
  91. 91.
    Batterman B (1969) Phys Rev Lett 22:703Google Scholar
  92. 92.
    Anderson S, Golovchenko J, Mair G (1976) Phys Rev Lett 37:1141Google Scholar
  93. 93.
    Cowan P, Golovchenko J, Robbins M (1980) Phys Rev Lett 44:1680Google Scholar
  94. 94.
    Erko A, Zizak I (2009) Spectrochim Acta Part B Atom Spectrosc 64:833Google Scholar
  95. 95.
    Erko A, Veldkamp M, Gudat W, Abrosimov N, Rossolenko S, Shekhtman V, Khasanov S, Alex V, Groth S, Schröder W, Vidal B, Yakshin A (1998) J Synchrotron Radiat 5:239Google Scholar
  96. 96.
    Ghose S, Dev B, Gupta A (2001) Phys Rev B 64:233Google Scholar
  97. 97.
    Ghose S, Dev B (2001) Phys Rev B 63:245409Google Scholar
  98. 98.
    Gupta A, Kumar D, Phatak V (2010) Phys Rev B 81:155402Google Scholar
  99. 99.
    Erdélyi Z, Cserháti C, Csik A, Daróczi L, Langer G, Balogh Z, Varga M, Beke D, Zizak I, Erko A (2009) X-ray Spectrom 38:338Google Scholar
  100. 100.
    Gupta A, Rajput P, Saraiya A, Reddy VR, Gupta M, Bernstorff S, Amenitsch H (2005) Phys Rev B 72:075436Google Scholar
  101. 101.
    Schlesiger R, Oberdorfer C, Wurz R, Greiwe G, Stender P, Artmeier M, Pelka P, Spaleck F, Schmitz G (2010) Rev Sci Instrum 81:043703Google Scholar
  102. 102.
    Stender P, Balogh Z, Schmitz G (2011) Phys Rev B 83:121407Google Scholar
  103. 103.
    Cojocaru-Mirédin O, Cadel E, Blavette D, Mangelinck D, Hoummada K, Genevois C, Deconihout B (2009) Ultramicroscopy 109:797Google Scholar
  104. 104.
    Adusumilli P, Lauhon LJ, Seidman DN, Murray CE, Avayu O, Rosenwaks Y (2009) Appl Phys Lett 94:113103Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Solid State PhysicsUniversity of DebrecenDebrecenHungary

Personalised recommendations