Journal of Materials Science

, Volume 46, Issue 22, pp 7344–7355 | Cite as

Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface

  • Hasan Sadeghifar
  • Ilari Filpponen
  • Sarah P. Clarke
  • Dermot F. Brougham
  • Dimitris S. ArgyropoulosEmail author


Cellulose nanocrystals (CNCs) were prepared by acidic hydrolysis of cotton fibers (Whatman #1 filter paper). In our efforts to select conditions in which the hydrolysis media does not install labile protons on the cellulose crystals, a mineral acid other than sulfuric acid (H2SO4) was used. Furthermore, in our attempts to increase the yields of nanocrystals ultrasonic energy was applied during the hydrolysis reaction. The primary objective was to develop hydrolysis reaction conditions for the optimum and reproducible CNC production. As such, the use of hydrobromic acid (HBr) with the application of sonication as a function of concentration (1.5–4.0 M), temperature (80–100 °C), and time (1–4 h) was examined. Applying sonic energy during the reaction was found to have significant positive effects as far as reproducible high yields are concerned. Overall, the combination of 2.5 M HBr, 100 °C, and 3 h associated with the sonication during the reaction generated the highest nanocrystal yields. In addition to the optimization study three types of surface modifications including TEMPO-mediated oxidation, alkynation, and azidation were used to prepare surface-activated, reactive CNCs. Subsequently, click chemistry was employed for bringing together the modified nanocrystalline materials in a unique regularly packed arrangement demonstrating a degree of molecular control for creating these structures at the nano level.


Cellulose Hydrolysis Reaction Ultrasonic Energy Cellulose Nanocrystals Photon Correlation Spectroscopy 



The authors would like to thank the College of Natural Resources at NCSU for the award of the Hofmann Fellowship to one of us (IF) that made graduate studies possible.


  1. 1.
    Battista OA (1950) Ind Eng Chem 42:502CrossRefGoogle Scholar
  2. 2.
    Dong X, Revol J, Gray D (1998) Cellulose 5:19CrossRefGoogle Scholar
  3. 3.
    Beck-Candanedo S, Roman M, Gray D, Gray G (2005) Biomacromolecules 6:1048CrossRefGoogle Scholar
  4. 4.
    Heinze T, Liebert T (2001) Prog Polym Sci 26:1689CrossRefGoogle Scholar
  5. 5.
    Klemm DK, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358CrossRefGoogle Scholar
  6. 6.
    Meldal M, Tornøe CW (2008) Chem Rev 108:2952CrossRefGoogle Scholar
  7. 7.
    Helms B, Mynar JL, Hawker CJ, Fréchet JMJ (2004) J Am Chem Soc 126:15020CrossRefGoogle Scholar
  8. 8.
    Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ (2009) Chem Rev 109:5620CrossRefGoogle Scholar
  9. 9.
    Liu J, Lam JWY, Tang BZ (2009) Chem Rev 109:5799CrossRefGoogle Scholar
  10. 10.
    Binder WH, Sachsenhofer R (2007) Macromol Rapid Commun 28:15CrossRefGoogle Scholar
  11. 11.
    Araki J, Wada M, Kuga S, Okano T (1999) J Wood Sci 45:258CrossRefGoogle Scholar
  12. 12.
    Araki J, Wada M, Kuga S (2001) Langmuir 17:21CrossRefGoogle Scholar
  13. 13.
    Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A: Physicochem Eng Aspects 142:75CrossRefGoogle Scholar
  14. 14.
    Sipahi-Sağlam E, Gelbrich M, Gruber E (2003) Cellulose 10:237CrossRefGoogle Scholar
  15. 15.
    Da Silva Perez D, Montanari S, Vignon MR (2003) Biomacromolecules 4:1417CrossRefGoogle Scholar
  16. 16.
    Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Biomacromolecules 10:1992CrossRefGoogle Scholar
  17. 17.
    Filpponen I, Argyropoulos DS (2010) Biomacromolecules 11:1060CrossRefGoogle Scholar
  18. 18.
    Liebert T, Hänsch C, Heinze T (2006) Macromol Rapid Commun 27:208CrossRefGoogle Scholar
  19. 19.
    Zhang J, Xu X-D, Wu D-Q, Zhang X-Z, Zhuo. R-X (2009) Carbohydr Polym 77:583CrossRefGoogle Scholar
  20. 20.
    Heinze T, Liebert T (2001) Prog Polym Sci 26:1689CrossRefGoogle Scholar
  21. 21.
    Xie H, King A, Kilpelainen I, Granstrom M, Argyropoulos DS (2007) Biomacromolecules 8:3740CrossRefGoogle Scholar
  22. 22.
    Zoia L, King WT, Argyropoulos DS (2011) J Agric Food Chem 59:829 doi:10.102/JF103615eCrossRefGoogle Scholar
  23. 23.
    Dong XM, Kimura T, Revol J, Gray DG (1996) Langmuir 12:2076CrossRefGoogle Scholar
  24. 24.
    Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) Text Res J 29:786CrossRefGoogle Scholar
  25. 25.
    Ahtee M, Hattula T, Mangs J, Paakkari T (1999) Paperi Ja Puu 8:475Google Scholar
  26. 26.
    Sugiyama J, Vuong R, Chanzy H (1991) Macromolecules 24:4168CrossRefGoogle Scholar
  27. 27.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) Biomacromolecules 9:57CrossRefGoogle Scholar
  28. 28.
    Okita Y, Saito T, Akira Isogai (2010) Biomacromolecules 11:1696CrossRefGoogle Scholar
  29. 29.
    Nishiyama Y, Chanzy H, Langan P (2002) J Am Chem Soc 124:9074CrossRefGoogle Scholar
  30. 30.
    Tahiri C, Vignon M (2000) Cellulose 7:177CrossRefGoogle Scholar
  31. 31.
    Fan LT, Gharpuray MM, Lee Y-H (1987) Biotechnology Monographs. Springer-Verlag, Berlin, p 76Google Scholar
  32. 32.
    Araki J, Wada M, Kuga S, Okano T (2000) Langmuir 16:2413CrossRefGoogle Scholar
  33. 33.
    Orts WJ, Godbout L, Marchessault RH, Revol J-F (1998) Macromolecules 31:5717CrossRefGoogle Scholar
  34. 34.
    Shibata I, Isogai A (2003) Cellulose 10:151CrossRefGoogle Scholar
  35. 35.
    Ibert M, Marsais F, Merbouh N (2002) Carbohydr Res 337:1059CrossRefGoogle Scholar
  36. 36.
    Kato Y, Matsuo R, Isogai A (2003) Carbohydr Polym 51:69CrossRefGoogle Scholar
  37. 37.
    Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromoleules 6:1048CrossRefGoogle Scholar
  38. 38.
    Wang N, Ding E, Cheng R (2008) Langmuir 24:5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hasan Sadeghifar
    • 1
  • Ilari Filpponen
    • 3
  • Sarah P. Clarke
    • 4
  • Dermot F. Brougham
    • 4
  • Dimitris S. Argyropoulos
    • 1
    • 2
    Email author
  1. 1.Organic Chemistry of Wood Components Laboratory, Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA
  2. 2.Department of ChemistryUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Forest Products Technology, School of Science and TechnologyAalto UniversityAaltoFinland
  4. 4.National Institute for Cellular Biotechnology, School of Chemical SciencesDublin City UniversityDublinIreland

Personalised recommendations