Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7335–7343 | Cite as

Improving bioactivity and durability of yttria-stabilized zirconia

  • Miho NakamuraEmail author
  • Masahiro Inuzuka
  • Kazuaki Hashimoto
  • Akiko Nagai
  • Kimihiro Yamashita
Article

Abstract

Because of its excellent mechanical properties, yttria-stabilized zirconia is currently used as an orthopedic and dental material. In this study, we have improved the bioactivity of yttria-stabilized zirconia by a combination of electrical polarization and chemical treatment. The phase transformation from tetragonal to monoclinic ZrO2 after alkaline treatment was inhibited on positively charged yttria-stabilized zirconia surfaces compared with negatively charged and conventional surfaces. During polarization, some oxide ions move from the positively charged surface to the negatively charged surface, leading to an increase in oxygen vacancies on the positive surface and hence greater formation of Zr–OH when this surface was exposed to alkaline solution. This then reduced the water adsorption at this surface and consequently reduced the rate of cleavage of Zr–O–Zr bonds. The bioactivity was assessed by immersing the samples in simulated body fluid and evaluating the growth of apatite on the surfaces. The combination of polarization and alkaline treatment increased the bioactivity in vitro.

Keywords

Simulated Body Fluid Alkaline Treatment Simulated Body Fluid Solution Tetragonal ZrO2 Thermally Stimulate Depolarization Current 

References

  1. 1.
    Yang Y, Ong JL, Tian J (2003) Biomaterials 24:619CrossRefGoogle Scholar
  2. 2.
    Li J, Hastings GW (1998) Handbook of biomaterials properties. Chapman and Hall, New York, p 321Google Scholar
  3. 3.
    Chevalier J, Aza AHD, Fantozzi G, Schehl M, Torrecillas R (2000) Adv Mater 12:1619CrossRefGoogle Scholar
  4. 4.
    Chevalier J (2006) Biomaterials 27:535CrossRefGoogle Scholar
  5. 5.
    Yamashita K, Oikawa N, Umegaki T (1996) Chem Mater 12:2697CrossRefGoogle Scholar
  6. 6.
    Yamashita K, Nakamura S (2005) J Ceram Soc Jpn 113:1CrossRefGoogle Scholar
  7. 7.
    Nakamura S, Takeda H, Yamashita K (2001) J Appl Phys 89(10):5386CrossRefGoogle Scholar
  8. 8.
    Tanaka Y, Iwasaki T, Nakamura M, Nagai A, Katayama K, Yamashita K (2010) J Appl Phys 107:014107CrossRefGoogle Scholar
  9. 9.
    Kobayashi T, Nakamura S, Yamashita K (2001) J Biomed Mater Res 57(4):477CrossRefGoogle Scholar
  10. 10.
    Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K (2006) Calcified Tissue Int 78(3):133CrossRefGoogle Scholar
  11. 11.
    Nagai A, Yamashita K, Imamura M, Azuma H (2008) Life Sci 82(23–24):1162CrossRefGoogle Scholar
  12. 12.
    Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K (2009) J Biomed Mater Res Appl Biomater B 90:641CrossRefGoogle Scholar
  13. 13.
    Nakamura M, Nakamura S, Sekijima Y, Niwa K, Kobayashi T, Yamashita K (2006) J Biomed Mater Res A 79(3):627CrossRefGoogle Scholar
  14. 14.
    Nakamura M, Nagai A, Hentunen T, Salonen J, Sekijima Y, Okura T, Hashimoto K, Toda Y, Monma H, Yamashita K (2009) ACS Appl Mater Interfaces 1(10):2181CrossRefGoogle Scholar
  15. 15.
    Sato T, Ohtaki S, Shimada M (1985) J Mater Sci 20:1466. doi: https://doi.org/10.1007/BF01026344 CrossRefGoogle Scholar
  16. 16.
    Sato T, Shimada M (1985) J Am Ceram Soc 68:356CrossRefGoogle Scholar
  17. 17.
    Chevalier J, Deville S, Munch E, Jullian R, Lair F (2004) Biomaterials 25:5539CrossRefGoogle Scholar
  18. 18.
    Kobayashi K, Kuwajima H, Masaki Y (1981) Solid State Ionics 3/4:489CrossRefGoogle Scholar
  19. 19.
    Sato T, Ohtaki S, Endo T, Shimada M (1986) J Mater Sci Lett 5:1140CrossRefGoogle Scholar
  20. 20.
    Lange FF, Dunlop GL, Davis BI (1986) J Am Ceram Soc 69:237CrossRefGoogle Scholar
  21. 21.
    Schmauder S, Schubert H (1986) J Am Ceram Soc 69:534CrossRefGoogle Scholar
  22. 22.
    Yohimura M (1988) Am Ceram Soc Bull 67:1950Google Scholar
  23. 23.
    Kim DJ, Jung HJ, Jang JW, Lee HL (1998) J Am Ceram Soc 81:2309CrossRefGoogle Scholar
  24. 24.
    Lin JD, Cuh JG, Lo CL (2001) Mater Chem Phys 77:808CrossRefGoogle Scholar
  25. 25.
    Tanaka K, Tamura J, Kawanabe K, Nawa M, Uchida M, Kokubo T, Nakamura T (2003) J Biomed Mater Res 67A:200CrossRefGoogle Scholar
  26. 26.
    Gutierrez-Gonzalez CF, Moya J, Palomares Bartolome JF (2010) J Am Ceram Soc 93:1842Google Scholar
  27. 27.
    Kim DJ, Lee MH, Lee FY, Han JS (2000) J Biomed Mater Res 53:438CrossRefGoogle Scholar
  28. 28.
    Djurado E, Boulc’h F, Dessemond L, Rosman N, Mermoux M (2004) J Electrochem Soc 151:A774CrossRefGoogle Scholar
  29. 29.
    Garvir RG, Nicholson PS (1972) J Am Ceram Soc 55:303CrossRefGoogle Scholar
  30. 30.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721CrossRefGoogle Scholar
  31. 31.
    Uchida M, Kim HM, Kokubo T, Nawa M, Asano T, Tanaka K, Nakamura T (2002) J Biomed Mater Res 60:277CrossRefGoogle Scholar
  32. 32.
    Bauerle JE (1969) J Phys Chem of Solids 30:2657CrossRefGoogle Scholar
  33. 33.
    Lee J, Kim D (2001) J Mater Res 16–9:2739CrossRefGoogle Scholar
  34. 34.
    Martin MC, Mecartney ML (2003) Solid State Ionics 161:67CrossRefGoogle Scholar
  35. 35.
    Li JF, Watanabe R, Zhanf BP, Asami K, Hashimoto K (1996) J Am Ceram Soc 79:3109CrossRefGoogle Scholar
  36. 36.
    Sato T, Fujishiro H, Endo T, Shimada M (1987) J Mater Sci 22:882. doi: https://doi.org/10.1007/BF01103525 CrossRefGoogle Scholar
  37. 37.
    Guo X (2003) J Am Ceram Soc 86:1867CrossRefGoogle Scholar
  38. 38.
    Guo X (2004) Chem Mater 16:3988CrossRefGoogle Scholar
  39. 39.
    Aza AHD, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Biomaterials 23:937CrossRefGoogle Scholar
  40. 40.
    Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T (2002) Biomaterials 23:313CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Miho Nakamura
    • 1
    Email author
  • Masahiro Inuzuka
    • 1
    • 2
  • Kazuaki Hashimoto
    • 2
  • Akiko Nagai
    • 1
  • Kimihiro Yamashita
    • 1
  1. 1.Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityChiyoda, TokyoJapan
  2. 2.Department of Life and Environmental ScienceChiba Institute of TechnologyChibaJapan

Personalised recommendations