Journal of Materials Science

, Volume 46, Issue 22, pp 7298–7312 | Cite as

Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations for soda-lime glass

  • M. GrujicicEmail author
  • B. Pandurangan
  • W. C. Bell
  • B. A. Cheeseman
  • P. Patel
  • G. A. Gazonas


Non-equilibrium and equilibrium molecular dynamics simulations are employed to study the mechanical response of soda-lime glass (a material commonly used in transparent armor applications) when subjected to the loading conditions associated with the generation and propagation of planar shock waves. Particular attention is given to the identification and characterization of various (inelastic-deformation and energy-dissipation) molecular-level phenomena and processes taking place at the shock front. The results obtained revealed that the shock loading causes a 2–4% (shock strength-dependent) density increase. In addition, an increase in the average coordination number of the silicon atoms is observed along with the creation of smaller Si–O rings. These processes are associated with significant energy absorption and dissipation and are believed to control the blast/ballistic impact mitigation potential of soda-lime glass. This study was also aimed at the determination (via purely computational means) of the shock Hugoniot (i.e., a set of axial stress vs. density/specific-volume vs. internal energy vs. particle velocity vs. temperature) material states obtained in soda-lime glass after the passage of a shock wave of a given strength and on the comparison of the computed results with their experimental counterparts. The availability of a shock Hugoniot is critical for construction of a high deformation-rate, large-strain, high pressure material model which can be used within a continuum-level computational analysis to capture the response of a soda-lime glass-based laminated transparent armor structure (e.g., a military vehicle windshield, door window, etc.) to blast/ballistic impact loading.


Shock Loading Computational Cell Hugoniot Relation Equilibrium Molecular Dynamic Material State Variable 



The material presented in this article is based on study supported by the U.S. Army/Clemson University Cooperative Agreements W911NF-04-2-0024 and W911NF-06-2-0042 and by an ARC-TARDEC research contract.


  1. 1.
    Strassburger E, Patel P, McCauley W, Templeton DW (2005) In: Proceedings of the 22nd international symposium on ballistics, November 2005, Vancouver, CanadaGoogle Scholar
  2. 2.
    Fink BK (2004) AMPTIAC Q 8(4):991Google Scholar
  3. 3.
    Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Fountzoulas C, Patel P, Strassburger E (2008) Mater Sci Eng A 492(1):397CrossRefGoogle Scholar
  4. 4.
    Grujicic M, Pandurangan B, Bell WC, Coutris N, Cheeseman BA, Fountzoulas C, Patel P (2009) J Mater Eng Perform 18(8):1012CrossRefGoogle Scholar
  5. 5.
    Grujicic M, Pandurangan B, Coutris N, Cheeseman BA, Fountzoulas C, Patel P (2009) Int J Impact Eng 36:386CrossRefGoogle Scholar
  6. 6.
    Grujicic M, Bell WC, Glomski PS, Pandurangan B, Cheeseman BA, Fountzoulas C, Patel P (2010) J Mater Eng Perform. doi: CrossRefGoogle Scholar
  7. 7.
    Woodcock LV, Angell CA, Cheeseman P (1976) J Chem Phys 65:1565CrossRefGoogle Scholar
  8. 8.
    Valle RGD, Venuti E (1996) Phys Rev B 54(6):3809CrossRefGoogle Scholar
  9. 9.
    Trachenko K, Dove MT (2002) J Phys Condens Matter 14:7449CrossRefGoogle Scholar
  10. 10.
    Liang Y, Miranda CR, Scandolo S (2007) Phys Rev B 75:024205CrossRefGoogle Scholar
  11. 11.
    Nghiem B (1998) PhD thesis, University of Paris 6, FranceGoogle Scholar
  12. 12.
    Denoual C, Hild F (2002) Eur J Mech Solids A 21:105CrossRefGoogle Scholar
  13. 13.
    Yazdchi M, Valliappan S, Zhang W (1996) Int J Numer Methods Eng 39:1555CrossRefGoogle Scholar
  14. 14.
    Hild F, Denoual C, Forquin P, Brajer X (2003) Comput Struct 81:1241CrossRefGoogle Scholar
  15. 15.
    Holmquist TJ, Templeton DW, Bishnoi KD (2001) Int J Impact Eng 25:211CrossRefGoogle Scholar
  16. 16.
    Camacho GT, Ortiz M (1996) Int J Solids Struct 33(20–22):2899CrossRefGoogle Scholar
  17. 17.
    Holian BL, Straub GK (1598) Phys Rev Lett 43:1979Google Scholar
  18. 18.
    Straub GK, Schiferl SK, Wallace DC (1983) Phys Rev B 28:312CrossRefGoogle Scholar
  19. 19.
    Klimenko VY, Dremin AN (1978) In: Breusov ON et al (eds) Detonatsiya, Chernogolovka. AkademiiNauk, Moscow, p 79Google Scholar
  20. 20.
    Holian BL, Hoover WG, Moran B, Straub GK (1980) Phys Rev A 22:2498CrossRefGoogle Scholar
  21. 21.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York, p 91Google Scholar
  22. 22.
    Alexander CS, Chhabildas LC, Reinhart WD, Templeton DW (2008) Int J Impact Eng 35:1376CrossRefGoogle Scholar
  23. 23.
    Sun H (1998) J Phys Chem B 102:7338CrossRefGoogle Scholar
  24. 24.
    Sun H, Ren P, Fried JR (1998) Comput Theor Polym Sci 8(1/2):229CrossRefGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
    Grujicic M, Sun YP, Koudela KL (2007) Appl Surf Sci 253:3009CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Theodorou DN, Suter UW (1986) Macromolecules 19:139CrossRefGoogle Scholar
  30. 30.
    Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, Berlin, HeidelbergGoogle Scholar
  31. 31.
    Allen MP, Tildesley DJ (1994) Computer simulations of liquids. Clarendon Press, New YorkGoogle Scholar
  32. 32.
    Grujicic M, Bell WC, Pandurangan B, Glomski PS (2010) J Mater Eng Perform. doi: CrossRefGoogle Scholar
  33. 33.
    Grujicic M, Bell WC, Pandurangan B, He T (2010) Mater Des 31(9):4050CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Grujicic
    • 1
    Email author
  • B. Pandurangan
    • 1
  • W. C. Bell
    • 1
  • B. A. Cheeseman
    • 2
  • P. Patel
    • 2
  • G. A. Gazonas
    • 2
  1. 1.Department of Mechanical EngineeringClemson UniversityClemsonUSA
  2. 2.Army Research Laboratory—Survivability Materials BranchAberdeen, Proving GroundUSA

Personalised recommendations