Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7279–7288 | Cite as

An explanation for the negative effect of elevated temperature at early ages on the late-age strength of concrete

  • Qiang Wang
  • Jing Jing Feng
  • Pei Yu YanEmail author
Article

Abstract

Elevated curing temperature at early ages usually has a negative effect on the late-age strength of concrete. This article aims to study the mechanism of this phenomenon. The results show that elevated curing temperature at early ages has a negative effect on the late-age strength of hardened cement paste, but it has a greater negative effect on the late-age strength of cement mortar. After elevated temperature curing at early ages, the late hydration of cement is hindered, but the late reaction of fly ash is not influenced. Owing to the continuous reaction of fly ash, the late-age pore structure of cement–fly ash paste under elevated curing temperature is finer than that under standard curing temperature, and the late-age strength of cement–fly ash paste under elevated curing temperature is higher. However, the late-age strength of cement–fly ash mortar under elevated curing temperature is lower. Apparently, there are differences between the effects of elevated curing temperature on hardened paste and mortar. It is the deterioration of transition zone between hardened paste and aggregate that makes the negative effect of elevated curing temperature on the mortar (or concrete) be greater than the hardened paste. As the water-to-binder ratio decreases, the negative effect of elevated curing temperature on the transition zone tends to be less.

Keywords

Compressive Strength Hydration Product Pozzolanic Reaction Hardened Cement Hydration Degree 

Notes

Acknowledgements

Authors would like to acknowledge National Basic Research Program of China Grant (No. 2009CB623106) and Beijing Natural Science Foundation (No. 8100001).

References

  1. 1.
    Paul M, Glasser FP (2000) Cem Concr Res 30:1877CrossRefGoogle Scholar
  2. 2.
    Escalante-Garcia JI, Sharp JH (2001) Cem Concr Res 31:695CrossRefGoogle Scholar
  3. 3.
    Mindess S, Young JF (1984) Concrete. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  4. 4.
    Klieger P (1958) ACI J 54:1063Google Scholar
  5. 5.
    Tan KF, Liu T (2006) J Build Mater 9:473 (in Chinese)Google Scholar
  6. 6.
    Kondo R (1973) Semento Gijutu Nenpo 27:45 (in Japanese)Google Scholar
  7. 7.
    Escalante-Garcia JI, Sharp JH (1998) Cem Concr Res 28:1245CrossRefGoogle Scholar
  8. 8.
    Copeland LE, Kantro DL (1969) Proc Int Symp Chem Cem 5:387Google Scholar
  9. 9.
    Kjellsen KO, Detwiler RJ, Gjorv OE (1991) Cem Concr Res 21:179CrossRefGoogle Scholar
  10. 10.
    Cao YJ, Detwiler RJ (1995) Cem Concr Res 25:627CrossRefGoogle Scholar
  11. 11.
    Mehta PK (1999) Concr Int 6:69Google Scholar
  12. 12.
    Fernandez-Jimenez A, Garcia-Lodeiro I, Palomo A (2007) J Mater Sci 42:3055. doi: https://doi.org/10.1007/ s10853-006-0584-8 CrossRefGoogle Scholar
  13. 13.
    Chen IA, Juenger MCG (2009) J Mater Sci 44:2617. doi: https://doi.org/10.1007/s10853-009-3342-x CrossRefGoogle Scholar
  14. 14.
    Wang FZ, Hu SG, Ding QJ, Peng YZ (2005) J Wuhan Univ Technol 20:115CrossRefGoogle Scholar
  15. 15.
    Termkhajornkit P, Nawa O, Kurumisawa K (2006) Cem Concr Res 28:781CrossRefGoogle Scholar
  16. 16.
    Ozer B, Ozkul MH (2004) Cem Concr Res 34:13CrossRefGoogle Scholar
  17. 17.
    Barnett SJ, Soutsos MN, Millard SG, Bungey JH (2006) Cem Concr Res 36:434CrossRefGoogle Scholar
  18. 18.
    Escalante JI, Gomez LY, Johal KK, Mendoza G, Mancha H, Mendez J (2001) Cem Concr Res 31:1403CrossRefGoogle Scholar
  19. 19.
    Lam L, Wong YL, Poon CS (2000) Cem Concr Res 30:747CrossRefGoogle Scholar
  20. 20.
    Sarita R, Singh NB, Singh NP (2006) Indian J Chem Technol 13:255Google Scholar
  21. 21.
    Luke L, Glasser FP (1987) Cem Concr Res 17:273CrossRefGoogle Scholar
  22. 22.
    Suprenant BA, Papadopoulos G (1991) J Mater Civil Eng 3:48CrossRefGoogle Scholar
  23. 23.
    Zhang YM, Sun W, Yan HD (2000) Cem Concr Comp 22:445CrossRefGoogle Scholar
  24. 24.
    Oner A, Akyuz S, Yildiz R (2005) Cem Conc Res 35:1165CrossRefGoogle Scholar
  25. 25.
    Berry EE, Hemmings RT, Zhang MH, Cornelious BJ, Golden DM (1994) ACI Mater J 91:382Google Scholar
  26. 26.
    Taylor HFW (1998) Cement chemistry, 2nd edn. Thomas Telford Publication, LondonGoogle Scholar
  27. 27.
    Mojumdar SC, Janokta I (2002) Acta Phys Slovaca 52:425Google Scholar
  28. 28.
    Sha W, Pereira GB (2001) Cem Concr Res 31:327CrossRefGoogle Scholar
  29. 29.
    Wang AQ, Zhang CZ, Sun W (2004) Cem Concr Res 34:2061CrossRefGoogle Scholar
  30. 30.
    Liu SH, Yan PY, Feng JW (2010) J Wuhan Univ Technol 25:700CrossRefGoogle Scholar
  31. 31.
    Zhang MH, Canmet (1995) Cem Concr Res 25:1165CrossRefGoogle Scholar
  32. 32.
    Jiang LH, Guan YG (1999) Cem Concr Res 29:631CrossRefGoogle Scholar
  33. 33.
    Poon CS, Wong YL, Lam L (1997) Constr Build Mater 11:383CrossRefGoogle Scholar
  34. 34.
    Yong JF (1998) Concr ACI 108:1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Civil EngineeringTsinghua UniversityBeijingChina

Personalised recommendations