Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7223–7227 | Cite as

Preparation and characterization of mesoporous silicon spheres directly from MCM-48 and their response to ammonia

  • Jiang Zhu
  • Ruibin Liu
  • Jun Xu
  • Changgong MengEmail author
Article

Abstract

The synthesis process of mesoporous silicon spheres directly from MCM-48 through a metal thermal reduction reaction is presented. The MCM-48 spheres were reduced in vacuum at 620 °C, with the spherical shape retained. The synthesized porous silicon spheres were confirmed as crystalline silicon by X-ray diffraction and transmission electron microscope. The silicon spheres have a microstructure different to those of etched silicon films by traditional method. The sample exhibited a slight red shift in PL spectrum after exposure to ammonia. This shift from 2.00 to 1.98 eV is ascribed to the Si–N adduct which disorder the space charge region in the semiconductor to weaken the quantum confinement effect. This design enables the syntheses of mesoporous nanocrystalline silicon spheres with multifarious three-dimensional shapes inherited from MCM-48 for sensor or optical applications.

Keywords

Porous Silicon High Resolution Transmission Electron Microscope Crystal Silicon Space Charge Region Quantum Confinement Effect 

Abbreviations

XRD

X-ray powder diffraction

SEM

Scanning electron microscope

TEM

Transmission electron microscope

HRTEM

High resolution TEM

SAED

Selected area electron diffraction

EDS

Energy dispersion spectrometer

PL

Photoluminescence

BET

Brunauer–Emmet–Teller

BJH

Barret–Joyner–Halendar

Notes

Acknowledgements

The authors are grateful to Experimental Center of Chemistry, Dalian University of Technology (China) for providing the necessities in experiments. Many thanks are dedicated to Mr. Jian Wu for his continuous help.

References

  1. 1.
    Torres-Costa V, Martin-Palma RJ (2010) J Mater Sci 45:2823. doi: https://doi.org/10.1007/s10853-010-4251-8 CrossRefGoogle Scholar
  2. 2.
    Mizsei J (2007) Thin Solid Films 515:8310CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Li D, Sang W, Yang D, Jiang M (2007) J Mater Sci 42:8496. doi: https://doi.org/10.1007/s10853-007-1749-9 CrossRefGoogle Scholar
  4. 4.
    Canham LT (1990) Appl Phys Lett 57(10):1046CrossRefGoogle Scholar
  5. 5.
    Ohmukai M, Okada K, Tsutsumi Y (2005) J Mater Sci 16:119. doi: https://doi.org/10.1007/s10854-005-6461-4 CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Li D, Yang D (2006) J Mater Sci 41:5283. doi: https://doi.org/10.1007/s10853-006-0267-5 CrossRefGoogle Scholar
  7. 7.
    Chuang SF, Collins SD, Smith RL (1989) Appl Phys Lett 55(7):675CrossRefGoogle Scholar
  8. 8.
    Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Nature 446:172CrossRefGoogle Scholar
  9. 9.
    Hai NH, Grigoriants I, Gedanken A (2009) J Phys Chem C 113:10521CrossRefGoogle Scholar
  10. 10.
    Banerjee HD, Sen S, Acharya HN (1982) Mater Sci Eng 52:173CrossRefGoogle Scholar
  11. 11.
    Zhu J, Wang Y, Meng CG (2010) J Mater Sci 45:6769. doi: https://doi.org/10.1007/s10853-010-4773-0 CrossRefGoogle Scholar
  12. 12.
    Zhu J, Liu RB, Xu J, Meng CG (2011) J Mater Sci 46:3840. doi: https://doi.org/10.1007/s10853-011-5300-7 CrossRefGoogle Scholar
  13. 13.
    Guo M, Zou X, Ren H, Muhammad F, Huang C, Qiu S, Zhu G (2011) Microporous Mesoporous Mater 142:194CrossRefGoogle Scholar
  14. 14.
    Romero AA, Alba MD, Zhou WZ, Klinowski J (1997) J Phys Chem B 101:5294CrossRefGoogle Scholar
  15. 15.
    Bustarret E, Sauvaian E, Ligeon M, Rosenbauer M (1996) Thin Solid Films 276:134CrossRefGoogle Scholar
  16. 16.
    Liu S, Kobayashi M, Sato S, Kimura K (2005) Chem Commun 37:4690CrossRefGoogle Scholar
  17. 17.
    Huo Q, Zhao D, Feng J, Weston K, Buratto SK, Stucky GD, Schacht S, Schüth F (1997) Adv Mater 9:974CrossRefGoogle Scholar
  18. 18.
    Hilonga A, Kim J, Sarawade PB (2010) J Mater Sci 45:1264. doi: https://doi.org/10.1007/s10853-009-4077-4 CrossRefGoogle Scholar
  19. 19.
    Martin-Palma RJ, Pasual L, Herrero P, Martinez-Duart JM (2002) Appl Phys Lett 81:25CrossRefGoogle Scholar
  20. 20.
    Yang S, Cai W, Zeng H, Li Z (2008) J Appl Phys 104:023516-1Google Scholar
  21. 21.
    Salcedo WJ, Fernandez FJR, Rubim JC (1999) J Raman Spectrosc 30:29CrossRefGoogle Scholar
  22. 22.
    Li GB, Hou XY, Yuan S, Chen HJ, Zhang FL, Fan HL, Wang X (1996) J Appl Phys 80(10):5967CrossRefGoogle Scholar
  23. 23.
    Chandler-Henderson RR, Sweryda-Krawiec B, Coffer JL (1995) Phys Chem 99:8851CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianChina
  2. 2.Chemistry DepartmentDalian University of TechnologyDalianChina

Personalised recommendations