Journal of Materials Science

, Volume 46, Issue 18, pp 6162–6167 | Cite as

Continuous direct melt foaming of a preceramic polymer using carbon dioxide: extrusion device and first results

  • Friedrich Wolff
  • Helmut MünstedtEmail author


In comparison to bulk materials, foams offer advantageous properties like low density, large surface area, high permeability, and low thermal conductivity. Therefore, foams are widely used in, e.g. thermal insulation, lightweight constructions, filtering, and catalysis. Prominent features of ceramic foams are high strength and stiffness, high temperature resistance, and high thermal shock resistance [1]. However, the foam properties depend strongly on the foam morphology and porosity which are influenced by the processing technique. The most important production routes incorporating preceramic polymers are the replica method, the template method, and direct foaming. The replica method uses an open cell polymer foam which is coated by a preceramic polymer slurry and subsequently pyrolysed leading to a positive foam structure [2, 3, 4, 5, 6]. The template method is based on organic phases such as polymer microbeads or expendable microspheres mixed into a preceramic polymer...


Foam Average Pore Size Template Method Foam Structure Ceramic Foam 



The authors gratefully acknowledge the funding of the German Research Foundation (DFG), which, within the framework of its “Excellence Initiative” supports the Cluster of Excellence “Engineering of Advanced Materials” ( at the University Erlangen-Nuremberg. Special thanks go to Dr. Larissa Zirkel and Dr. Joachim Kaschta for their helpful discussions and suggestions during the set up of the foam extrusion line. The support of the Institute of Glass and Ceramics of the University Erlangen-Nürnberg at which the pyrolysis of the sample shown was performed, is highly acknowledged.


  1. 1.
    Kumar BVM, Kim Y-W (2010) Sci Technol Adv Mater 11:044303CrossRefGoogle Scholar
  2. 2.
    Bao X, Nangrejo MR, Edirisinhe MJ (2000) J Mater Sci 35:4365. doi: CrossRefGoogle Scholar
  3. 3.
    Nangrejo MR, Bao X, Edirisinghe MJ (2000) J Eur Ceram Soc 20:1777CrossRefGoogle Scholar
  4. 4.
    Nangrejo MR, Bao X, Edirisinghe MJ (2000) J Mater Sci Lett 19:787CrossRefGoogle Scholar
  5. 5.
    Nangrejo MR, Edirisinghe MJ (2002) J Porous Mat 9:131CrossRefGoogle Scholar
  6. 6.
    Ceron-Nicolat B, Fey T, Greil P (2010) Adv Eng Mater 12:884CrossRefGoogle Scholar
  7. 7.
    Colombo P, Bernardo E (2003) Compos Sci Technol 63:2353CrossRefGoogle Scholar
  8. 8.
    Colombo P, Bernardo E, Biasetto L (2004) J Am Ceram Soc 87:152CrossRefGoogle Scholar
  9. 9.
    Shibuya M, Sakurai M, Takahashi T (2007) Compos Sci Technol 67:3338CrossRefGoogle Scholar
  10. 10.
    Shibuya M, Takahashi T, Koyama K (2007) Comps Sci Technol 67:119CrossRefGoogle Scholar
  11. 11.
    Kim Y-W, Kim S-H, Kim H-D, Park CB (2004) J Mater Sci 39:5647. doi: CrossRefGoogle Scholar
  12. 12.
    Kim Y-W, Jin Y-J, Chun Y-S, Song I-H, Kim H-D (2005) Scr Mater 53:921CrossRefGoogle Scholar
  13. 13.
    Kim Y-W, Kim S-H, Song I-H, Kim H-D, Park CB (2005) J Am Ceram Soc 88:2949CrossRefGoogle Scholar
  14. 14.
    Kim Y-W, Eom J-H, Wang C, Park CB (2008) J Am Ceram Soc 91:1361CrossRefGoogle Scholar
  15. 15.
    Kim Y-W, Jin Y-J, Eom J-H, Song I-H, Kim H-D (2010) J Mater Sci 45:2808. doi: CrossRefGoogle Scholar
  16. 16.
    Biasetto L, Francis A, Palade P, Principi G, Colombo P (2008) J Mater Sci 43:4119. doi: CrossRefGoogle Scholar
  17. 17.
    Jang D-H, Kim Y-W, Song I-H, Kim H-D, Park CB (2006) J Ceram Soc Jpn 114:549CrossRefGoogle Scholar
  18. 18.
    Kumar BVM, Zhai W, Eom J-H, Kim Y-W, Park CB (2011) J Mater Sci 46:3664. doi: CrossRefGoogle Scholar
  19. 19.
    Wang C, Wang J, Park CB, Kim Y-W (2007) J Mater Sci 42:2854. doi: CrossRefGoogle Scholar
  20. 20.
    Kim Y-W, Wang C, Park CB (2007) J Ceram Soc Jpn 115:419CrossRefGoogle Scholar
  21. 21.
    Eom J-H, Kim Y-W (2007) Met Mater Int 13:521CrossRefGoogle Scholar
  22. 22.
    Kim Y-W, Kim S-H, Xu X, Choi C-H, Park CB, Kim H-D (2002) J Mater Sci Lett 21:1667CrossRefGoogle Scholar
  23. 23.
    Kim Y-W, Kim S-H, Wang C, Park CB (2003) J Am Ceram Soc 86:2231CrossRefGoogle Scholar
  24. 24.
    Kim Y-W, Park CB (2003) Compos Sci Technol 63:2371CrossRefGoogle Scholar
  25. 25.
    Wolff F, Zirkel L, Betzold S, Jakob M, Maier V, Nachtrab F, Ceron-Nicolat B, Fey T, Münstedt H (2011) Int Polym Proc. doi: CrossRefGoogle Scholar
  26. 26.
    Takahashi T, Colombo P (2003) J Porous Mater 10:113CrossRefGoogle Scholar
  27. 27.
    Kim Y-W, Lee K-H, Lee S-H, Park CB (2003) J Ceram Soc Jpn 111:863CrossRefGoogle Scholar
  28. 28.
    Zeschky J, Goetz-Neunhoeffer F, Neubauer J, Jason Lo SH, Kummer B, Scheffler M, Greil P (2003) Compos Sci Technol 63:2361CrossRefGoogle Scholar
  29. 29.
    Zeschky J, Höfner T, Arnold C, Weißmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Acta Mater 53:927CrossRefGoogle Scholar
  30. 30.
    Colombo P, Gambaryan-Roisman T, Scheffler M, Buhler P, Greil P (2001) J Am Ceram Soc 84:2265CrossRefGoogle Scholar
  31. 31.
    Rocha RM, Moura EAB, Bressiani AHA, Bressiani JC (2008) J Mater Sci 43:4466. doi: CrossRefGoogle Scholar
  32. 32.
    Colombo P, Griffoni M, Modesti M (1998) J Sol-Gel Sci Technol 13:195CrossRefGoogle Scholar
  33. 33.
    Colombo P, Modesti M (1999) J Sol-Gel Sci Technol 14:103CrossRefGoogle Scholar
  34. 34.
    Colombo P, Modesti M (1999) J Am Ceram Soc 82:573CrossRefGoogle Scholar
  35. 35.
    Takahashi T, Münstedt H, Colombo P, Modesti M (2001) J Mater Sci 36:1627. doi: CrossRefGoogle Scholar
  36. 36.
    Takahashi T, Münstedt H, Modesti M, Colombo P (2001) J Eur Ceram Soc 21:2821CrossRefGoogle Scholar
  37. 37.
    Schmidt H, Koch D, Grathwohl G, Colombo P (2001) J Am Ceram Soc 84:2252CrossRefGoogle Scholar
  38. 38.
    Wolff F, Kugler C, Münstedt H (2010) Rheol Acta. doi: CrossRefGoogle Scholar
  39. 39.
    Park CB, Behravesh AH, Venter RD (1998) Polym Eng Sci 38:1812CrossRefGoogle Scholar
  40. 40.
    Sauceau M, Nikitine C, Rodier E, Fages J (2007) J Supercrit Fluid 43:367CrossRefGoogle Scholar
  41. 41.
    Nikitine C, Rodier E, Dauceau M, Letourneau J–J, Fages J (2010) J Appl Polym Sci 115:981CrossRefGoogle Scholar
  42. 42.
    Han X, Koelling KW, Tomasko DL, Lee LJ (2002) Polym Eng Sci 42:2094CrossRefGoogle Scholar
  43. 43.
    Siripurapu S, Gay YJ, Royer JR, De Simone JM, Spontak RJ, Khan SA (2002) Polymer 43:5511CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science, Institute of Polymer MaterialsFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations