Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7206–7213 | Cite as

Investigation of the electrical and mechanical properties of short sisal fiber-reinforced epoxy composite in correlation with structural parameters of the reinforced fiber

  • Annapurna PatraEmail author
  • Dillip Kumar Bisoyi
Article

Abstract

Chemical modification of the sisal fiber is done through dewaxing. Increment in the degree of crystallinity, crystallite size, and bulk density are observed in case of the dewaxed sisal fiber. The partial removal of wax, hemicellulose, and lignin content is confirmed from the FTIR spectra. Better flexural strength and tensile strength are observed in case of dewaxed sisal fiber-reinforced epoxy composite (DSFREC) in comparison to the raw sisal fiber-reinforced epoxy composite (RSFREC). This may be due to the improvement in the adhesion between the fiber and matrix. Lower values of dielectric constant (εr) and dielectric loss (tanδ) are also observed in case of DSFREC. The shifting of Mmax toward higher frequency side with rise in temperature ascribing a correlation between motions of mobile ions and suggests a spread of relaxation times. Moreover, the structural parameters of the fiber are correlated with the mechanical and electrical properties of the composite.

Keywords

Hemicellulose Flexural Strength Cellulose Chain Interfacial Polarization Crystalline Peak 

Notes

Acknowledgements

Profound appreciation and gratitude is extended to one and all the members of the Department of Physics, and the Director NIT Rourkela for their cooperation during completion of the manuscript of this article. We must thank Dr. Sitangshu Sarkar, Scientist-in-Charge, Sisal Research Station (ICAR), Bamra, Orissa (INDIA) for his kind cooperation for providing us the sisal fibre for this study.

References

  1. 1.
    Shah AN, Lakkad SC (1981) Fibre Sci Technol 15:41CrossRefGoogle Scholar
  2. 2.
    Bisanda ETN, Ansell MP (1991) J Compos Sci Technol 4:165CrossRefGoogle Scholar
  3. 3.
    Kulkarni AG, Satyanarayana KG, Rohtagi PK (1981) J Mater Sci Lett 16:1720Google Scholar
  4. 4.
    Dutta AK, Mukherjee PS, Mitra CB (1980) J Mater Sci 15:1856. doi: https://doi.org/10.1007/BF00550607 CrossRefGoogle Scholar
  5. 5.
    Patra A, Bisoyi DK (2010) J Mater Sci 45:5742. doi: https://doi.org/10.1007/s10853-010-4644-8 CrossRefGoogle Scholar
  6. 6.
    Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) Compos Sci Technol 61:1437CrossRefGoogle Scholar
  7. 7.
    Feng DAAN, Caulfield DF, Sanadi AR (2001) Polym Compos 22:506CrossRefGoogle Scholar
  8. 8.
    Nosbi N, Akil HM, Ishak ZAM, Bakar AA (2011) Bioresources 6:950Google Scholar
  9. 9.
    Marcia CB, Alessandra LM, Marcio K, Jose DA, Antonio DN (2009) Amaz Phoenix Proj Sustain 1:1431Google Scholar
  10. 10.
    Khan NMD (1991) Ph. D Thesis. pp 71–72Google Scholar
  11. 11.
    Roy SC (1960) Text Res J 30:451CrossRefGoogle Scholar
  12. 12.
    Ratho T, Torasia S, Mohanty JC (1964) Indian J Phys 38:28Google Scholar
  13. 13.
    Klata E, Krucinska I, Borysiak S, Garbarczyk J, Katedra M, Wlokienniczej P, Lodzka L (2003) Pol Kompoz 3:332Google Scholar
  14. 14.
    Borysiak S, Doczekalska B (2005) Fibres Text East Eur 13:87Google Scholar
  15. 15.
    Rosa IMD, Santulli C, Sarasini F (2010) Mater Des 31:2397CrossRefGoogle Scholar
  16. 16.
    Klemm D, Heublein B, Fink H, Bohn A (2005) Angew Chem Int Ed 44:3358CrossRefGoogle Scholar
  17. 17.
    Liansong W, Dongling H, Tianyao Z, Lifang Z, Chengdong X (2010) Cryst Res Technol 45:275CrossRefGoogle Scholar
  18. 18.
    Troedec ML, Peyratout C, Chotard T, Bonnet JP, Smith A, Guinebretiére R (2007) In: 10th International Conference of the European Ceramic Society, Berlin, pp 451–456Google Scholar
  19. 19.
    Mahato DN, Prasad RN, Mathur BN (2009) Indian J Pure Appl Phys 47:643Google Scholar
  20. 20.
    Trindade WG, Hoareau W, Megiatto JD, Razera IAT, Castellan A, Frollini E (2005) Biomacromolecules 6:2485CrossRefGoogle Scholar
  21. 21.
    Georgopoulos ST, Tarantili PA, Avgerinos E, Andreopoulos AG, Koukios EG (2005) Polym Degrad Stab 90:303CrossRefGoogle Scholar
  22. 22.
    Thielemans W, Wool RP (2005) Biomacromolecules 6:1895CrossRefGoogle Scholar
  23. 23.
    Bisanda ETN (1991) Ph. D ThesisGoogle Scholar
  24. 24.
    Hanna AA, Atef AI, Salwa O, Heikal SO (2003) J Polym Sci Polym Chem Ed 18:1425CrossRefGoogle Scholar
  25. 25.
    Turnhout JV, Wübbenhorst M (2002) J Non-Cryst Solids 305:50CrossRefGoogle Scholar
  26. 26.
    Hammami H, Arous M, Lagache M, Kallel A (2006) Compos Part A1 37:8Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations