Advertisement

Journal of Materials Science

, Volume 46, Issue 18, pp 5896–5902 | Cite as

Synthesis and electrochemical analyses of vapor-grown carbon fiber/pyrolytic carbon-coated LiFePO4 composite

  • Fei Deng
  • Xierong ZengEmail author
  • Jizhao Zou
  • Xiaohua Li
Article

Abstract

A vapor-grown carbon fiber/pyrolytic carbon-coated LiFePO4 (VGCF/PCLFP) composite has been prepared in one step through a solid-state reaction accompanied by a gas-phase decomposition process. This method leads to the formation of a conductive network composed of pyrolytic carbon layer and in situ vapor-grown carbon fiber in the composite. The amount of carbon in the composite has been determined by a modified formula based on thermogravimetric analysis to be around 3.0 wt%. The optimized electrode of VGCF/PCLFP composite can deliver 150 mAhg−1 at 0.5 C rate, 137 mAhg−1 at 1.0 C rate and 132 mAhg−1 at 3.0 C rate. And its discharge capacity loses only ~4% at a higher rate of 3.0 C after 100 cycles. The area-specific impedance of a cell fabricated with VGCF/PCLFP composite is lower than that made of only pyrolytic carbon-coated LiFePO4, reported here for the purpose of comparison. In comparison to the electrode made of carbon black/LiFePO4 composite (10 wt% carbon), the charge transfer resistance of the VGCF/PCLFP composite electrode decreases from 165 to 91 Ω. This technique presents an attractive way to produce high-performance LiFePO4 cathode material through a low-cost high-efficiency process.

Keywords

Discharge Capacity Cathode Material LiFePO4 Composite Electrode Conductive Network 

Notes

Acknowledgements

This work was supported by the Two Hundred Plan for Talent Station of Shenzhen (Shenfu [2008] No.182), the Science and Technology R&D Program of Shenzhen (CXB201005240010A), the Science and Technology R&D Program of Shenzhen (ZD200904290044A), the Science and Technology Project of Shenzhen (JC200903130266A), and the fund of Shenzhen Key Laboratory of Special Functional Materials (T201005). We also thank Professor Wenjun Liu for his technical guidance with electrochemical impedance spectroscopy.

References

  1. 1.
    Whittingham MS (2004) Chem Rev 104:4271CrossRefGoogle Scholar
  2. 2.
    Li H, Wang ZX, Chen LQ, Huang XJ (2009) Adv Mater 21:4593CrossRefGoogle Scholar
  3. 3.
    Huang H, Yin SC, Nazarz LF (2001) Electrochem Solid State Lett 4:A170CrossRefGoogle Scholar
  4. 4.
    Padhi AK, Najundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188CrossRefGoogle Scholar
  5. 5.
    Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) J Electrochem Soc 144:1609CrossRefGoogle Scholar
  6. 6.
    Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) J Electrochem Soc 144:2581CrossRefGoogle Scholar
  7. 7.
    Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123CrossRefGoogle Scholar
  8. 8.
    Molenda J, Stoklosa A, Bak T (1989) Solid State Ionics 36:53CrossRefGoogle Scholar
  9. 9.
    Guan J, Liu M (1998) Solid State Ionics 110:21CrossRefGoogle Scholar
  10. 10.
    Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) In: 196th meeting of the electrochemical society, Honolulu, HI, p 127Google Scholar
  11. 11.
    Belharouak I, Johnson C, Amine K (2005) Electrochem Commun 7:983CrossRefGoogle Scholar
  12. 12.
    Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosatia B (2002) Electrochem Solid State Lett 5:A47CrossRefGoogle Scholar
  13. 13.
    Chen ZH, Dahna JR (2002) J Electrochem Soc 149:A1184CrossRefGoogle Scholar
  14. 14.
    Zhao B, Jiang Y, Zhang HJ, Tao HH, Zhong MY, Jiao Z (2009) J Power Sources 189:462CrossRefGoogle Scholar
  15. 15.
    Marcinek ML, Wilcox JW, Doeff MM, Kosteckia RM (2009) J Electrochem Soc 156:A48CrossRefGoogle Scholar
  16. 16.
    Nakamura T, Shima Y, Matsui H, Yamada Y, Hashimoto S, Miyauchi H, Koshiba N (2010) J Electrochem Soc 157:A544CrossRefGoogle Scholar
  17. 17.
    Tatsumi K, Zaghib K, Sawada Y, Abe H, Ohsaki T (1995) J Electrochem Soc 142:1090CrossRefGoogle Scholar
  18. 18.
    Endo M, Nishimura Y, Takahashis T, Takeuchi K, Dresselhaus MS (1996) J Phys Chem Solids 57:725CrossRefGoogle Scholar
  19. 19.
    Endo M, Kim YA, Hayashi T, Nishimurab K, Matusitaa T, Miyashitaa K, Dresselhaus MS (2001) Carbon 39:1287CrossRefGoogle Scholar
  20. 20.
    Utsunomiya H, Nakajima T, Ohzawa Y, Mazej Z, Zemvab B, Endo M (2010) J Power Sources 195:6805CrossRefGoogle Scholar
  21. 21.
    Fraczek-Szczypta A, Bogun M, Blazewicz S (2009) J Mater Sci 44:4721. doi: https://doi.org/10.1007/s10853-009-3730-2 CrossRefGoogle Scholar
  22. 22.
    Kercher AK, Kiggans JO, Dudney NJ (2010) J Electrochem Soc 157:A1323CrossRefGoogle Scholar
  23. 23.
    Speck JS, Endo M, Dresselhaus MS (1989) J Cryst Growth 94:834CrossRefGoogle Scholar
  24. 24.
    Tibbetts GG (1983) Appl Phys Lett 42:666CrossRefGoogle Scholar
  25. 25.
    Chen CC, Liu MH, Chen JM (2004) In: 206th meeting of the electrochemical society, Honolulu, HI, p 413Google Scholar
  26. 26.
    Lin Q, Harb JN (2004) J Electrochem Soc 151:A1115CrossRefGoogle Scholar
  27. 27.
    Sheem K, Lee YH, Lim HS (2006) J Power Sources 158:1425CrossRefGoogle Scholar
  28. 28.
    Li XL, Kang FY, Shen WC (2006) Carbon 44:1334CrossRefGoogle Scholar
  29. 29.
    Li XL, Kang FY, Bai XD, Shen WC (2007) Electrochem Commun 9:663CrossRefGoogle Scholar
  30. 30.
    Sotowa C, Origi G, Takeuchi M, Nishimura Y, Takeuchi K, Jang IY, Kim YJ, Hayashi T, Kim YA, Endo M, Dresselhaus MS (2008) ChemSusChem 1:911CrossRefGoogle Scholar
  31. 31.
    Jin B, Jin EM, Park KH, Gu HB (2008) Electrochem Commun 10:1537CrossRefGoogle Scholar
  32. 32.
    Burba CM, Frech R (2004) J Electrochem Soc 151:A1032CrossRefGoogle Scholar
  33. 33.
    Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ (2009) Adv Mater 21:2710CrossRefGoogle Scholar
  34. 34.
    Zou JZ, Zeng XR, Xiong XB, Tang HL, Li L, Liu Q (2007) Carbon 45:828CrossRefGoogle Scholar
  35. 35.
    Ajayan PM, Nugent JM, Siegel RW, Wei B, Kohler-Redlich P (2000) Nature 404:243CrossRefGoogle Scholar
  36. 36.
    Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) J Power Sources 119–121:770CrossRefGoogle Scholar
  37. 37.
    Zhou YK, He BL, Zhou WJ, Li HL (2004) J Electrochem Soc 151:A1052CrossRefGoogle Scholar
  38. 38.
    Lee CY, Tsai HM, Chuang HJ, Li SY, Lin P, Tseng TY (2005) J Electrochem Soc 152:A716CrossRefGoogle Scholar
  39. 39.
    Choia YM, Pyun SI (1997) Solid State Ionics 99:173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fei Deng
    • 1
  • Xierong Zeng
    • 2
    • 3
    Email author
  • Jizhao Zou
    • 2
    • 3
  • Xiaohua Li
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.College of Materials Science and EngineeringShenzhen UniversityShenzhenChina
  3. 3.Shenzhen Key Laboratory of Special Functional MaterialsShenzhenChina

Personalised recommendations