Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 7056–7066 | Cite as

Sol–gel synthesis and characterization of mesoporous yttria-stabilized zirconia membranes with graded pore structure

  • Bo Lu
  • Y. S. LinEmail author
Article

Abstract

Mesoporous yttria-stabilized zirconia (YSZ) membranes can be used for liquid phase applications in harsh environments and as supports for ultra-thin dense ceramic, carbonate, or metallic membranes. This article reports on the synthesis and characterization of three-layer mesoporous ceramic membranes consisting of a mesoporous YSZ layer, a macroporous YSZ intermediate layer, and macroporous α-alumina support. The macroporous YSZ intermediate layer was coated on the alumina support using a suspension of submicron-sized YSZ powders, and the mesoporous YSZ layer was obtained by dip-coating with diluted zirconia sol doped with yttrium nitrate. The mesoporous YSZ layer has desired cubic phase structure. Crack-free mesoporous YSZ membranes could be obtained by multiple dip-coating, drying, and calcination using a dilute YSZ sol at a concentration of 0.014 M with the help of using a drying control chemical additive. The 5 times dip-coated mesoporous YSZ membranes were about 1 μm in thickness with an average pore diameter of 3 nm. The mesoporous YSZ membranes exhibited Knudsen separation factor. The characteristics of the dip-coating process for the mesoporous YSZ membranes on the macroporous YSZ support are similar to those on the macroporous alumina support.

Keywords

Composite Membrane Alumina Support Knudsen Flow Zirconia Membrane Helium Permeance 

Notes

Acknowledgements

The authors would like to acknowledge the support of NSF (CBET-0828146) and the DOE (DE-FE000470) on this project.

References

  1. 1.
    Bhave R (1991) Inorganic membranes synthesis, characteristics, and applications. Van Rostrnd Reinhold, New YorkCrossRefGoogle Scholar
  2. 2.
    Chang CH, Gopalan R, Lin YS (1994) J Membr Sci 91:27CrossRefGoogle Scholar
  3. 3.
    Gopalan R, Chang CH, Lin YS (1995) J Mater Sci 30:3075. doi: https://doi.org/10.1007/BF01209219 CrossRefGoogle Scholar
  4. 4.
    Priyatham T, Bauri R (2010) Mater Charact 61:54CrossRefGoogle Scholar
  5. 5.
    Mercera PDL, Ommen VJG, Doesburg EBM, Burggraaf AJ, Roos JRH (1991) Appl Catal 78:79CrossRefGoogle Scholar
  6. 6.
    Birkby I, Stevens R (1996) Key Eng Mater 122:527CrossRefGoogle Scholar
  7. 7.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Hu LF, Wang CA, Huang Y (2010) J Mater Sci 45:3242. doi: https://doi.org/10.1007/s10853-010-4331-9 CrossRefGoogle Scholar
  9. 9.
    Hu LF, Wang CA, Huang Y (2011) J Mater Sci 46:623. doi: https://doi.org/10.1007/s10853-010-4783-y CrossRefGoogle Scholar
  10. 10.
    Thery PY, Poulain M, Dupeux M, Braccini M (2009) J Mater Sci 44:1726. doi: https://doi.org/10.1007/s10853-008-3108-x CrossRefGoogle Scholar
  11. 11.
    Kueper TW, Visco SJ, Jonghe LCD (1992) Solid State Ion 52:251CrossRefGoogle Scholar
  12. 12.
    Kanezashi M, O’Brien J, Lin YS (2007) Microporous Mesoporous Mater 103:302CrossRefGoogle Scholar
  13. 13.
    Burggraaf AJ, Bouwmeester HJM, Boukamp BA, Uhihorn RJR, Zaspalis VT (1991) Science of ceramic interface. North-Holland, AmsterdamGoogle Scholar
  14. 14.
    Wen TL, Herbert V, Vilminot S, Bernier JC (1991) J Mater Sci 26:3787. doi: https://doi.org/10.1007/BF01184972 CrossRefGoogle Scholar
  15. 15.
    Herbert V, His C, Guille J, Vilmiont S, Wen TL (1991) J Mater Sci 26:5184. doi: https://doi.org/10.1007/BF01143211 CrossRefGoogle Scholar
  16. 16.
    Okubo T, Nagamoto H (1995) J Mater Sci 30:749. doi: https://doi.org/10.1007/BF00356338 CrossRefGoogle Scholar
  17. 17.
    Kuo CW, Lee YH, Hung IM, Wang MC, Wen SB, Fung KZ, Shih CJ (2008) J Alloys Compd 453:470CrossRefGoogle Scholar
  18. 18.
    Farhikhten S, Maghsoudipour A, Raissi B (2010) J Alloys Compd 491:402CrossRefGoogle Scholar
  19. 19.
    Heshmatpour F, Aghakhanpour RB (2011) Powder Technol 205:193CrossRefGoogle Scholar
  20. 20.
    Okubo T, Takahashi T, Sakadata M, Nagamoto H (1996) J Membr Sci 118:151CrossRefGoogle Scholar
  21. 21.
    Kim J, Lin YS (1998) J Membr Sci 139:75CrossRefGoogle Scholar
  22. 22.
    Changrong X, Huaqiang C, Hong W, Pinghua Y, Guangyao M, Dingkun P (1999) J Membr Sci 162:181CrossRefGoogle Scholar
  23. 23.
    Lin YS, Kim J (2000) Ind Eng Chem Res 39:2124CrossRefGoogle Scholar
  24. 24.
    Anderson M, Lin YS (2010) J Membr Sci 357:122CrossRefGoogle Scholar
  25. 25.
    Kim J, Lin YS (1999) J Am Ceram Soc 82:2641CrossRefGoogle Scholar
  26. 26.
    Garcia G, Figueras A, Casado J, Llibre J, Mokchah M, Petot-ervas G, Calderer J (1998) Thin Solid Films 317:241CrossRefGoogle Scholar
  27. 27.
    Lin YS, Burggraaf AJ (1993) J Membr Sci 79:65CrossRefGoogle Scholar
  28. 28.
    Scherer GW, Brinker CJ (eds) (1990) Sol–gel science. Academic Press, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Chemical Engineering, School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations