Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6998–7003 | Cite as

Investigation of glass transition temperature in (60 − x)V2O5–40TeO2xNiO glasses at different heating rates

  • Dariush Souri
Article

Abstract

For the ternary (60 − x)V2O5–40TeO2xNiO glasses with 0 ≤ x ≤ 20 (in mol%), the glass transition temperature (Tg) and crystallization temperature (Tcr) have been determined using differential scanning calorimetry (DSC) at heating rates φ = 3, 6, 9, and 12 K/min. The effect of the heating rate and the NiO content on Tg is discussed. It was observed that the transition region shifts to higher temperatures when the measuring time is reduced (or, conversely, when the applied temperature rate is increased). Using DSC, the compositional dependence of Tg has been determined and so, an empirical equation has been deduced which relates the glass transition temperature with the NiO content.

Keywords

Differential Scanning Calorimetry Glass Transition Temperature V2O5 TeO2 Compositional Dependence 

References

  1. 1.
    El-Mallawany R (2002) Tellurite glass handbook: physical properties and data. CRC Press, FLGoogle Scholar
  2. 2.
    Stanworth JE (1952) J Soc Glass Technol 36:217Google Scholar
  3. 3.
    Souri D (2010) J Non-Cryst Solids 356:2181CrossRefGoogle Scholar
  4. 4.
    Souri D, Shomalian K (2009) J Non-Cryst Solids 355:1597CrossRefGoogle Scholar
  5. 5.
    Souri D, Salehizadeh SA (2009) J Mater Sci 44:5800. doi: https://doi.org/10.1007/s10853-009-3814-z CrossRefGoogle Scholar
  6. 6.
    Souri D (2008) J Phys D Appl Phys 41:105102CrossRefGoogle Scholar
  7. 7.
    Souri D, Elahi M (2007) Phys Scr 75(2):219CrossRefGoogle Scholar
  8. 8.
    Souri D, Elahi M, Yazdanpanah MS (2008) Cent Eur J Phys 6(2):306Google Scholar
  9. 9.
    Chowdari BVR, Kumari PP (1997) J Phys Chem Solids 58(3):515CrossRefGoogle Scholar
  10. 10.
    Pal M, Hirota K, Tsujigami Y, Sakata H (2001) J Phys D Appl Phys 34:459CrossRefGoogle Scholar
  11. 11.
    Sharma BK, Dube DC, Mansingh A (1984) J Non-Cryst Solids 65:39CrossRefGoogle Scholar
  12. 12.
    Murugan GS, Ohishi Y (2004) J Non-Cryst Solids 341:86CrossRefGoogle Scholar
  13. 13.
    Jayaseelan S, Muralidharan P, Venkateswarlu M, Satyanarayana N (2005) Mater Sci Eng B 118:136CrossRefGoogle Scholar
  14. 14.
    El-Mallawany R, Abousehly A, Yousef E (2000) J Mater Sci Lett 19:409CrossRefGoogle Scholar
  15. 15.
    El-Adawy A, El-Mallawany R (1996) J Mater Sci Lett 15:2065Google Scholar
  16. 16.
    Abdel-Kader A, El-Mallawany R, Elkholy MM (1993) J Appl Phys 73(1):71CrossRefGoogle Scholar
  17. 17.
    El-Mallawany R (2000) Phys Status Solidi (a) 177:439CrossRefGoogle Scholar
  18. 18.
    Sidkey MA, El-Mallawany R, Abousehly A, Saddeek YB (2002) Glass Sci Technol Glastech Ber 75:87Google Scholar
  19. 19.
    Turky G, Dawy M (2002) Mater Chem Phys 77:48CrossRefGoogle Scholar
  20. 20.
    Scherer GW (1986) Relaxation in glasses and composites. Wiley, New YorkGoogle Scholar
  21. 21.
    Gerlach E, Grosse P (eds) (1979) The physics of selenium and tellurium. Springer, BerlinGoogle Scholar
  22. 22.
    Bishop SG, Strom U, Taylor PC (1975) Phys Rev Lett 34:1346CrossRefGoogle Scholar
  23. 23.
    Donohue J (1974) The structure of the elements. Wiley, New YorkGoogle Scholar
  24. 24.
    Moynihan CT, Easteal AJ, Wilder J, Tucker J (1974) J Phys Chem 78:2673CrossRefGoogle Scholar
  25. 25.
    Elliott SR (1990) Physics of amorphous materials, 2nd edition edn. Longman Scientific & Technical, EssexGoogle Scholar
  26. 26.
    Avramov I, Guinev G, Rodrigues ACM (2000) J Non-Cryst Solids 271:12CrossRefGoogle Scholar
  27. 27.
    Zhu D, Ray CS, Zhou W, Day DE (2011) Phys Chem Glasses (in press)Google Scholar
  28. 28.
    Sega K, Kuroda Y, Sakata H (1998) J Mater Sci 33:1303. doi: https://doi.org/10.1023/A:1004302431797 CrossRefGoogle Scholar
  29. 29.
    Lebrun N, Levy M, Soquet JL (1990) Solid State Ionics 40(41):718CrossRefGoogle Scholar
  30. 30.
    Dhawan VK, Mansingh A (1982) J Non-Cryst Solids 51:87CrossRefGoogle Scholar
  31. 31.
    Smith GW, Pinkerton FE, Moleski JJ (1999) Thermochim Acta 342:31CrossRefGoogle Scholar
  32. 32.
    Vyazovkin S, Sbirrazzuoli N, Dranca I (2004) Macromol Rapid Commun 25:1708CrossRefGoogle Scholar
  33. 33.
    Abu-Sehly Aa, Abu El-Oyoun M, Elabbar AA (2008) Thermochim Acta 472:25CrossRefGoogle Scholar
  34. 34.
    Zhu D, Ray CS, Zhou W, Day DE (2003) J Non-Cryst Solids 319:247CrossRefGoogle Scholar
  35. 35.
    Rocherull’e J, Matecki M, Delugeard Y (1998) J Non-Cryst Solids 238:51CrossRefGoogle Scholar
  36. 36.
    Lasocka M (1976) Mater Sci Eng 23:173CrossRefGoogle Scholar
  37. 37.
    Sinclair RN, Wrigth AC, Bachra B, Dimitriev YB, Dimitrov VV, Arnaudov MG (1998) J Non-Cryst Solids 232–234:38CrossRefGoogle Scholar
  38. 38.
    El-Mallawany R, Abdel-Kader A, El-Hawary M, El-Khoshkhany N (2010) J Mater Sci 45:871. doi: https://doi.org/10.1007/s10853-009-4015-5 CrossRefGoogle Scholar
  39. 39.
    Mitrofanov YuP, Khonik VA, Granato AV, Joncich DM, Khonik SV (2011) J Appl Phys 109:073518CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Science, Department of PhysicsMalayer UniversityMalayerIran

Personalised recommendations