Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6988–6997 | Cite as

Kinetic studies on water-soluble gold nanoparticles coordinated to poly(vinylpyrrolidone): isotropic to anisotropic transformation and morphology

  • Md. Habib Ullah
  • Tafazzal Hossain
  • Chang-Sik HaEmail author
Article

Abstract

The growth kinetics, isotropic-to-anisotropic transformation, structural properties and surface morphology of polyvinylpyrrolidone (PVP)-coordinated gold nanoparticles are reported in this work. The reduction of gold ions, kinetics, and growth mechanism of gold nanoparticles, and the coordination between PVP and gold are explored for the first time in this single report. The layer-by-layer growth mechanism (adsorption of gold ions to the nuclei and their subsequent reduction) was observed in the growth of isotropic nanoparticles during the initial stage of the reaction, whereas the Ostwald ripening mechanism (growth of larger particles at the expense of smaller particles) was observed in the growth of the anisotropic nanoparticles in the later stage of the reaction. The surface plasmon resonance band for the anisotropic nanoparticles (average size for a typical sample was ca. 9 nm) was blue-shifted (20 nm) toward that of the isotropic nanoparticles (whose average size is much smaller than that of the anisotropic nanoparticles). The increased effective electron density on the surface of anisotropic particles was the cause of this blue shift. The resultant gold colloids were very stable because the PVP molecules were coordinated through both the C–N and C=O groups, instead of the C=O group alone. The positions of the surface plasmon band and morphology of the gold products were strongly dependent on the amount of PVP.

Keywords

Gold Nanoparticles Gold Particle Gold Colloid Plasmon Band Surface Plasmon Resonance Band 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science and Technology, Korea (MEST) (Acceleration Research Program (No. 2011-0000385) and the Pioneer Research Center Program (No. 2011-0001667/2011-0001668), a grant from the Fundamental R&D program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Korea, and the MEST for the Brain Korea 21 Project. We thank the Korea Basic Science Institute for the TEM and XPS measurements.

References

  1. 1.
    Link S, El-Sayed MA (2000) Int Rev Phys Chem 19:409CrossRefGoogle Scholar
  2. 2.
    Wilson OM, Scott RWJ, Garcia-Martinez JC, Crooks RM (2005) J Am Chem Soc 127:1015CrossRefGoogle Scholar
  3. 3.
    Ullah MH, Kim I (2006) J Nanosci Nanotechnol 6:1CrossRefGoogle Scholar
  4. 4.
    Lazarides AA, Schatz GC (2000) J Phys Chem B 104:460CrossRefGoogle Scholar
  5. 5.
    Zhao L, Kelly KL, Schatz GC (2003) J Phys Chem B 107:7343CrossRefGoogle Scholar
  6. 6.
    Malinsky MD, Kelly KL, Schatz GC, Duyne RPV (2001) J Am Chem Soc 123:1471CrossRefGoogle Scholar
  7. 7.
    Xue C, Millstone JE, Li S, Mirkin CA (2007) Angew Chem Int Ed 46:8436CrossRefGoogle Scholar
  8. 8.
    Métraux GS, Cao YC, Jin R, Mirkin CA (2003) Nano Lett 3:519CrossRefGoogle Scholar
  9. 9.
    Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) J Phys Chem B 110:15666CrossRefGoogle Scholar
  10. 10.
    Orendorff CJ, Sau TK, Murphy CJ (2006) Small 2:636CrossRefGoogle Scholar
  11. 11.
    Zhang J, Liu H, Wang Z, Ming M (2007) Adv Funct Mater 17:3295CrossRefGoogle Scholar
  12. 12.
    Ullah MH, Chung W-S, Kim I, Ha CS (2006) Small 2:870CrossRefGoogle Scholar
  13. 13.
    Ullah MH, Kim I, Ha CS (2006) Mater Lett 60:1496CrossRefGoogle Scholar
  14. 14.
    Gulati A, Liao H, Hafner JH (2006) J Phys Chem B 110:22323CrossRefGoogle Scholar
  15. 15.
    Chen CF, Tzeng SD, Chen HY, Lin KJ, Gwo S (2008) J Am Chem Soc 130:824CrossRefGoogle Scholar
  16. 16.
    Jain PK, Huang W, El-Sayed MA (2007) Nano Lett 7:2080CrossRefGoogle Scholar
  17. 17.
    Liu GL, Yin Y, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, Bear DG, Gray JW, Alivisatos AP, Lee LP, Chen FF (2006) Nat Nanotechnol 1:47CrossRefGoogle Scholar
  18. 18.
    Lee JS, Han MS, Mirkin CA (2007) Angew Chem Int Ed 46:4093CrossRefGoogle Scholar
  19. 19.
    Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li X, Xia Y (2005) Adv Mater 17:2255CrossRefGoogle Scholar
  20. 20.
    McKenzie F, Faulds K, Graham D (2007) Small 3:1866CrossRefGoogle Scholar
  21. 21.
    Shi X, Wang S, Meshinchi S, Antwerp MEV, Bi X, Lee I, Baker JR (2007) Small 3:1245CrossRefGoogle Scholar
  22. 22.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Small 3:1941CrossRefGoogle Scholar
  23. 23.
    Hirai H, Yakura N (2001) Polym Adv Technol 12:724CrossRefGoogle Scholar
  24. 24.
    Ma H, Huang S, Feng X, Zhang X, Tian F, Yong F, Pan W, Wang Y, Chen S (2006) Chem Phys Chem 7:333CrossRefGoogle Scholar
  25. 25.
    Ullah MH, Kim JH, Ha CS (2008) Mater Lett 62:2249CrossRefGoogle Scholar
  26. 26.
    Teranishi T, Kiyokawa I, Miyake M (1998) Adv Mater 10:596CrossRefGoogle Scholar
  27. 27.
    Harpeness R, Peng Z, Liu X, Pol VG, Koltypin Y, Gedanken A (2005) J Colloid Interface Sci 287:678CrossRefGoogle Scholar
  28. 28.
    Sun L, Liu A, Tao X, Zhao Y (2011) J Mater Sci 46:839. doi: https://doi.org/10.1007/s10853-010-4826-4 CrossRefGoogle Scholar
  29. 29.
    Liu D, Ren S, Wu H, Zhang Q, Wen L (2008) J Mater Sci 43:1974. doi: https://doi.org/10.1007/s10853-008-2459-7 CrossRefGoogle Scholar
  30. 30.
    Blezinger P, Wang J, Gondo M, Quezada A, Mehrens D, French AS, Sullivan S, Rolland A, Ralston R, Min W (1999) Nat Biotechnol 17:343CrossRefGoogle Scholar
  31. 31.
    Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Chem Mater 14:4736CrossRefGoogle Scholar
  32. 32.
    Zhang F-B, Chen Y, Hu-Lin Li M-W (2006) J Mater Sci 41:2545. doi: https://doi.org/10.1007/s10853-006-5332-6 CrossRefGoogle Scholar
  33. 33.
    Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li X, Xia Y (2005) Nano Lett 5:473CrossRefGoogle Scholar
  34. 34.
    Tsuji M, Hashimoto M, Nishizawa Y, Tsuji T (2003) Chem Lett 32:1114CrossRefGoogle Scholar
  35. 35.
    Yamamato M, Kashiwagi Y, Sakata T, Mori H, Nakamoto M (2007) Chem Lett 36:1348CrossRefGoogle Scholar
  36. 36.
    Liu Q, Liu H, Zhou Q, Liang Y, Yin G, Xu Z (2006) J Mater Sci 41:3657. doi: https://doi.org/10.1007/s10853-006-6199-2 CrossRefGoogle Scholar
  37. 37.
    Walker CH, St John JV, Wisian-Neilson P (2001) J Am Chem Soc 123:846Google Scholar
  38. 38.
    Kemal L, Jiang XC, Wong K, Yu AB (2008) J Phys Chem C 112:15656CrossRefGoogle Scholar
  39. 39.
    Job G, Herrmann F (2006) Eur J Phys 27:353CrossRefGoogle Scholar
  40. 40.
    Baierlein R (2001) Am J Phys 69:423CrossRefGoogle Scholar
  41. 41.
    Huang ZY, Mills G, Hajek B (1993) J Phys Chem 97:11542CrossRefGoogle Scholar
  42. 42.
    Mie G (1908) Ann Phys 25:377CrossRefGoogle Scholar
  43. 43.
    Esumi K, Hosoya T, Suzuki A, Torigoe K (2000) Langmuir 16:2978CrossRefGoogle Scholar
  44. 44.
    Chow MK, Zukoski CF (1994) J Colloid Interface Sci 165:97CrossRefGoogle Scholar
  45. 45.
    Huang W, Qian W, Jain PK, El-Sayed MA (2007) Nano Lett 10:3227CrossRefGoogle Scholar
  46. 46.
    Lim IIS, Zhong CJ (2007) Gold Bull 40:59CrossRefGoogle Scholar
  47. 47.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23:741CrossRefGoogle Scholar
  48. 48.
    Link S, El-Sayed MA (1999) J Phys Chem B 103:8410CrossRefGoogle Scholar
  49. 49.
    Baldan A (2002) J Mater Sci 37:2171. doi: https://doi.org/10.1023/A:1015388912729 CrossRefGoogle Scholar
  50. 50.
    Wilson GJ, Matijasevich AS, Mitchell DRG, Schulz JC, Will GD (2006) Langmuir 22:2016CrossRefGoogle Scholar
  51. 51.
    Rocha TCR, Sato F, Dantas SO, Galvão DS, Zanchet D (2009) J Phys Chem C 113:11976CrossRefGoogle Scholar
  52. 52.
    Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Langmuir 12:909CrossRefGoogle Scholar
  53. 53.
    Jana NR (2005) Small 1:875CrossRefGoogle Scholar
  54. 54.
    Michaels AM, Jiang J, Brus L (2000) J Phys Chem B 104:119651CrossRefGoogle Scholar
  55. 55.
    Nikoobakht B, Wang ZL, El-Sayed MA (2000) J Phys Chem B 104:8635CrossRefGoogle Scholar
  56. 56.
    Zhu J, Shen Y, Xie A, Qiu L, Zhang Q, Zhang S (2007) J Phys Chem C 111:7629CrossRefGoogle Scholar
  57. 57.
    Haas I, Shanmugam S, Gedanken A (2006) J Phys Chem B 110:16947CrossRefGoogle Scholar
  58. 58.
    Zhang Z, Zhao B, Hu L (1996) J Solid State Chem 121:105CrossRefGoogle Scholar
  59. 59.
    Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Cmacho-Bragado A, Yacaman MJ (2005) Chem Mater 17:6042CrossRefGoogle Scholar
  60. 60.
    Handbook of X-ray Photoelectron Spectroscopy, Copyright 1992, 1995 by Physical Electronics, Inc. Eden Prairie, Minnesota 55344, USAGoogle Scholar
  61. 61.
    Jiang P, Zhou JJ, Li R, Wang ZL, Xie SS (2006) Nanotechnology 17:3533CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Md. Habib Ullah
    • 1
    • 2
  • Tafazzal Hossain
    • 2
  • Chang-Sik Ha
    • 1
    Email author
  1. 1.Pioneer Research Center for Nanogrid Materials, Department of Polymer Science and EngineeringPusan National UniversityBusanKorea
  2. 2.Department of Physics, School of Natural ScienceAmerican International University-BangladeshDhakaBangladesh

Personalised recommendations