Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6975–6980 | Cite as

Preparation, characterization, and fluorescence properties of well-dispersed core–shell CdS/carbon nanoparticles

  • Kejie Zhang
  • Xiaoheng LiuEmail author
  • Yuxi Sun
  • Fei Wang
Article

Abstract

The core–shell CdS-carbon (CdS/C) nanoparticles were synthesized for the first time via a facile pyrolysis approach of bis(β-mercaptoethanol)-cadmium(II) as a single-source precursor. After using acid treatment method, well-dispersed and homogeneous core–shell CdS/C nanoparticles were obtained. The morphology, structure, and properties of CdS/C nanoparticles were investigated by X-ray diffraction (XRD), Raman spectra, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy. Most of the prepared nanoparticles presented core–shell structures with core diameter of ~10 nm and shell thickness of ~4 nm. The CdS core belonged to hexagonal crystal system. The carbon shell was employed as a good dispersion medium to form well-dispersed small sized CdS particles. XRD and XPS results revealed that there is an interaction between CdS core and carbon shell. Fluorescence measurement showed that the monodispersed CdS-carbon nanoparticles exhibit remarkable fluorescence enhancement effect compared with that of the pristine CdS nanoparticles, which indicates the prepared nanoparticles are a promising photoresponsive material.

Keywords

Sintered Sample Carbon Shell Conventional Pyrolysis Metallorganic Chemical Vapor Deposition Fluorescence Enhancement Effect 

Notes

Acknowledgements

This project is supported financially by the Natural Science Foundation of China (Grant No. 20974045) and the Natural Science Foundation of Jiangsu Province (No. BK2009385).

References

  1. 1.
    Tak Y, Hong SJ, Lee JS, Yong K (2009) J Mater Chem 19(33):5945CrossRefGoogle Scholar
  2. 2.
    Cao F–F, Wu X-L, Xin S, Guo Y-G, Wan L-J (2010) J Phys Chem C 114(22):10308CrossRefGoogle Scholar
  3. 3.
    Jiang L-Y, Xin S, Wu X-L, Hong L, Guo Y-G, Wan L-J (2010) J Mater Chem 20(35):7565CrossRefGoogle Scholar
  4. 4.
    Aldeek F, Balan L, Medjahdi G, Roques-Carmes T, Malval J-P, Mustin C, Ghanbaja J, Schneider Rl (2009) J Phys Chem C 113(45):19458CrossRefGoogle Scholar
  5. 5.
    Hu Y, Liu Y, Qian H, Li Z, Chen J (2010) Langmuir 26(23):18570CrossRefGoogle Scholar
  6. 6.
    Reiss P, Bleuse J, Pron A (2002) Nano Lett 2(7):781CrossRefGoogle Scholar
  7. 7.
    Noh M, Kwon Y, Lee H, Cho J, Kim Y, Kim MG (2005) Chem Mater 17(8):1926CrossRefGoogle Scholar
  8. 8.
    Lou XW, Chen JS, Chen P, Archer LA (2009) Chem Mater 21(13):2868CrossRefGoogle Scholar
  9. 9.
    Li H, Shih WY, Shih W-H (2007) Ind Eng Chem Res 46(7):2013CrossRefGoogle Scholar
  10. 10.
    Li J, Liu C-Y, Xie Z (2011) Mater Res Bull 46(5):743CrossRefGoogle Scholar
  11. 11.
    Yang C, Liang G, Xu K, Gao P, Xu B (2009) J Mater Sci 44(7):1894. doi: https://doi.org/10.1007/s10853-009-3247-8 CrossRefGoogle Scholar
  12. 12.
    Yang H, Holloway PH (2003) Appl Phys Lett 82(12):1965CrossRefGoogle Scholar
  13. 13.
    Zhang J, Tang Y, Lee K, Ouyang M (2010) Science 327(5973):1634CrossRefGoogle Scholar
  14. 14.
    Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 119(30):7019CrossRefGoogle Scholar
  15. 15.
    Nayak J, Sahu SN, Kasuya J, Nozaki S (2008) Appl Surf Sci 254(22):7215CrossRefGoogle Scholar
  16. 16.
    Gorer S, Penner RM (1999) J Phys Chem B 103(28):5750CrossRefGoogle Scholar
  17. 17.
    Zhang W-M, Wu X-L, Hu J-S, Guo Y-G, Wan L-J (2008) Adv Funct Mater 18(24):3941CrossRefGoogle Scholar
  18. 18.
    Lin Y-S, Duh J-G, Hung M-H (2010) J Phys Chem C 114(30):13136CrossRefGoogle Scholar
  19. 19.
    Datta A, Panda SK, Chaudhuri S (2007) J Phys Chem C 111(46):17260CrossRefGoogle Scholar
  20. 20.
    Zhao D, He Z, Chan WH, Choi MMF (2008) J Phys Chem C 113(4):1293CrossRefGoogle Scholar
  21. 21.
    Chen D, Zhao F, Qi H, Rutherford M, Peng X (2010) Chem Mater 22(4):1437CrossRefGoogle Scholar
  22. 22.
    Fan D, Afzaal M, Mallik MA, Nguyen CQ, O’Brien P, Thomas PJ (2007) Coord Chem Rev 251(13–14):1878CrossRefGoogle Scholar
  23. 23.
    Garje SS, Eisler DJ, Ritch JS, Afzaal M, O’Brien P, Chivers T (2006) J Am Chem Soc 128(10):3120CrossRefGoogle Scholar
  24. 24.
    Cesar I, Kay A, Gonzalez Martinez JA, Grätzel M (2006) J Am Chem Soc 128(14):4582CrossRefGoogle Scholar
  25. 25.
    Lee YH, Im SH, Rhee JH, Lee J-H, Seok SI (2010) ACS Appl Mater Interfaces 2(6):1648CrossRefGoogle Scholar
  26. 26.
    Wang XF, Zhou Y, Xu JJ, Chen HY (2009) Adv Funct Mater 19(9):1444CrossRefGoogle Scholar
  27. 27.
    Shalom M, Rühle S, Hod I, Yahav S, Zaban A (2009) J Am Chem Soc 131(29):9876CrossRefGoogle Scholar
  28. 28.
    Lee HJ, Chen P, Moon S-J, Sauvage F, Sivula K, Bessho T, Gamelin DR, Comte P, Zakeeruddin SM, Seok SI, Grätzel M, Nazeeruddin MK (2009) Langmuir 25(13):7602CrossRefGoogle Scholar
  29. 29.
    Park K, Yu H, Chung W, Kim B-J, Kim S (2009) J Mater Sci 44(16):4315. doi: https://doi.org/10.1007/s10853-009-3641-2 CrossRefGoogle Scholar
  30. 30.
    Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y (2010) Adv Mater 22(1):103CrossRefGoogle Scholar
  31. 31.
    Wang P, Jiang T, Zhu C, Zhai Y, Wang D, Dong S (2010) Nano Res 3(11):794CrossRefGoogle Scholar
  32. 32.
    Cortes A, Svåsand E, Lavayen V, Segura R, Häberle P (2010) J Mater Sci 45(18):4958. doi: https://doi.org/10.1007/s10853-010-4350-6 CrossRefGoogle Scholar
  33. 33.
    Banerji S, Byrne RE, Livingstone SE (1982) Transit Met Chem 7:5CrossRefGoogle Scholar
  34. 34.
    Hart M (1975) Acta Crystallogr A 31(6):878CrossRefGoogle Scholar
  35. 35.
    Zhai T, Fang X, Bando Y, Liao Q, Xu X, Zeng H, Ma Y, Yao J, Golberg D (2009) ACS Nano 3(4):949CrossRefGoogle Scholar
  36. 36.
    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97(18):187401CrossRefGoogle Scholar
  37. 37.
    Tong XL, Jiang DS, Liu ZM, Luo MZ, Li Y, Lu PX, Yang G, Long H (2008) Thin Solid Films 516(8):2003CrossRefGoogle Scholar
  38. 38.
    Vemuri RS, Gullapalli SK, Zubia D, McClure JC, Ramana CV (2010) Chem Phys Lett 495(4–6):232CrossRefGoogle Scholar
  39. 39.
    Nair MTS, Nair PK (1994) J Appl Phys 75(3):1557CrossRefGoogle Scholar
  40. 40.
    Wang CL, Zhang H, Zhang JH, Li MJ, Han K, Yang B (2006) J Colloid Interface Sci 294(1):104CrossRefGoogle Scholar
  41. 41.
    Spanhel L, Haase M, Weller H, Henglein A (1987) J Am Chem Soc 109(19):5649CrossRefGoogle Scholar
  42. 42.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115(19):8706CrossRefGoogle Scholar
  43. 43.
    Stucky GD, Mac Dougall JE (1990) Science 247(4943):669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory for Soft Chemistry and Functional MaterialsNanjing University of Science and Technology, Ministry of EducationNanjingChina

Personalised recommendations