Journal of Materials Science

, Volume 46, Issue 21, pp 6910–6915 | Cite as

The isochronal δ → γ transformation of high Cr ferritic heat-resistant steel during cooling

  • Qiuzhi Gao
  • Yongchang Liu
  • Xinjie DiEmail author
  • Zhizhong Dong
  • Zesheng Yan


Thermal simulation technology was employed to investigate phase transformation in heat-affected zones (HAZ) of high Cr ferritic heat-resistant steel. The simulated continuous cooling transformation diagram was established based on the experimental results obtained from different cooling rates in the range of 0.02–60 °C/s. A theoretical model considering the site saturation nucleation at grain boundaries has been applied to calculate the austenite fraction as a function of cooling rate. It is found that both the austenite fraction and grain size decrease with the increase of cooling rates. The calculated results are mostly consistent with the experimental data.


Ferrite Austenite Cool Rate Duplex Stainless Steel Thermal Simulation 



The authors are grateful to the National Natural Science Foundation of China and Shanghai Baosteel Group Company (No. 50834011) for grant and financial support.


  1. 1.
    Mythili R, Thomas Paul V, Saroja S, Vijayalakshmi M, Raghunathan V (2003) J Nucl Mater 312:199CrossRefGoogle Scholar
  2. 2.
    Klueh R, Nelson A (2007) J Nucl Mater 371:37CrossRefGoogle Scholar
  3. 3.
    Jones W, Hills C, Polonis D (1991) Metal Mater Trans A 22:1049CrossRefGoogle Scholar
  4. 4.
    Hertzman S, Brolund B, Ferreira P (1997) Metall Mater Trans A 28:277CrossRefGoogle Scholar
  5. 5.
    Hemmer H, Grong (1999) Metall Mater Trans A 30:2915CrossRefGoogle Scholar
  6. 6.
    Sieurin H, Sandstrm R (2006) Mater Sci Eng A 418:250CrossRefGoogle Scholar
  7. 7.
    Zhang W, DebRoy T, Palmer T, Elmer J (2005) Acta Mater 53:4441CrossRefGoogle Scholar
  8. 8.
    Zhang W, Elmer J, DebRoy T (2002) Scr Mater 46:753CrossRefGoogle Scholar
  9. 9.
    Ferreira P, Hertzman S (1991) Proceedings of Duplex Stainless Steels ’91, vol 2, Beaune, p 959Google Scholar
  10. 10.
    Cahn JW (1956) Acta Metall 4:449CrossRefGoogle Scholar
  11. 11.
    Trivedi R, Pound G (1967) J Appl Phys 38:3569CrossRefGoogle Scholar
  12. 12.
    Finkler H, Schirra M (1996) Steel Res 67:328CrossRefGoogle Scholar
  13. 13.
    George G, Shaikh H, Parvathavarthini N, George R, Khatak H (2001) J Mater Eng Perform 10:460CrossRefGoogle Scholar
  14. 14.
    Patriarca P, Harkness S, Duke J, Cooper L (1976) Nucl Technol 28:516Google Scholar
  15. 15.
    Maehara Y, Ohmori Y (1987) Metall Mater Trans A 18:663CrossRefGoogle Scholar
  16. 16.
    Lee K, Cho H, Choi D (1999) J Alloys Compd 285:156CrossRefGoogle Scholar
  17. 17.
    Jimenez J, Carsi M, Ruano O, Penalba F (2000) J Mater Sci 35:907. doi: CrossRefGoogle Scholar
  18. 18.
    Liu F, Sommer F, Bos C, Mittemeijer E (2007) Int Mater Rev 52:193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Qiuzhi Gao
    • 1
  • Yongchang Liu
    • 1
  • Xinjie Di
    • 1
    Email author
  • Zhizhong Dong
    • 1
  • Zesheng Yan
    • 1
  1. 1.School of Material Science and Engineering, Tianjin Key Laboratory of Advanced Jointing TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations