Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6856–6862 | Cite as

Study on fracture behaviour of Al–15%Mg2Si metal matrix composite with and without beryllium additions

  • Mortaza AzarbarmasEmail author
  • Masoud Emamy
  • Mohammad Alipour
Article

Abstract

In this study, the influence of Beryllium (Be) content on the fracture behaviour of Al–15%Mg2Si composite was investigated. The results showed an increase in mechanical properties with increasing of Be content. The stress–strain curves of samples showed a same category of serrations reflecting non-uniform deformation. Scanning electron microscopy was employed to examine the crack nucleation and fracture model. The results indicate that Al–15%Mg2Si composite shows different behaviours of crack initiation and fracture for samples with and without Be. Differences observed in the fracture behaviour were attributed to microstructural changes as well as morphological aspects of primary Mg2Si particles.

Keywords

Fracture Toughness Crack Nucleation Eutectic Cell Mg2Si Particle Unmodified Sample 

Notes

Acknowledgements

The authors would like to thank University of Tehran for financial support of this study.

References

  1. 1.
    Davim JP (2007) Mater Des 28(10):2687CrossRefGoogle Scholar
  2. 2.
    Zhao YG, Qin QD, Liang YH, Zhou W, Jiang QC (2005) J Mater Sci 40:1831. doi: https://doi.org/10.1007/s10853-005-0705-9 CrossRefGoogle Scholar
  3. 3.
    Song CJ, Xu ZM, Li JG (2007) Composites A 38:427CrossRefGoogle Scholar
  4. 4.
    Ronald BA, Vijayaraghavan L, Krishnamurthy R (2009) Mater Des 30:686Google Scholar
  5. 5.
    Natarajan S, Narayanasamy R, Kumaresh Babu SP, Dinesh G, Anil Kumar B, Sivaprasad K (2009) Mater Des 30:2531CrossRefGoogle Scholar
  6. 6.
    Li B, Liu Y, Cao H, He L, Li J (2009) J Mater Sci 44:3909. doi: https://doi.org/10.1007/s10853-009-3527-3 CrossRefGoogle Scholar
  7. 7.
    Ghosh SK, Saha P (2011) Mater Des 23:139CrossRefGoogle Scholar
  8. 8.
    Sun Y, Ahlatci H (2011) Mater Des 32:2983Google Scholar
  9. 9.
    Li C, Wu Y, Li H, Liu X (2009) J Alloys Compd 477:212CrossRefGoogle Scholar
  10. 10.
    Zhang J, Fan Z, Wang YQ, Zhou BL (2001) Mater Sci Technol 17:494CrossRefGoogle Scholar
  11. 11.
    Hadian R, Emamy M, Varahram N, Nemati N (2008) Mater Sci Eng A 490:250CrossRefGoogle Scholar
  12. 12.
    Qin QD, Zhao YG, Liu C, Cong PJ, Zhou WJ (2008) J Alloys Compd 454:142CrossRefGoogle Scholar
  13. 13.
    Li C, Liu X, Wu YJ (2008) J Alloys Compd 465:145CrossRefGoogle Scholar
  14. 14.
    Emamy M, Nemati N, Heidarzadeh A (2010) Mater Sci Eng A 527:2998CrossRefGoogle Scholar
  15. 15.
    Wang HY, Jiang QC, Ma BX, Wang Y, Wang JG, Li JB (2005) J Alloys Compd 387:105CrossRefGoogle Scholar
  16. 16.
    Yang CY, Lee SL, Lee CK, Lin JC (2005) Mater Chem Phys 93:412CrossRefGoogle Scholar
  17. 17.
    Aglan HA, Liu ZY, Hassan MF, Fateh M (2004) J Mater Process Technol 151:268CrossRefGoogle Scholar
  18. 18.
    Hertzberg R (1983) Deformation and fracture mechanics. Wiley, New YorkGoogle Scholar
  19. 19.
    Vedani M, Errico FD, Gariboldi E (2006) Compos Sci Technol 66:343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mortaza Azarbarmas
    • 1
    Email author
  • Masoud Emamy
    • 1
  • Mohammad Alipour
    • 1
  1. 1.School of Metallurgy and MaterialsUniversity of TehranTehranIran

Personalised recommendations