Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6835–6840 | Cite as

A simple synthesis of long nanostructured arrays of crystalline strontium titanates at low-temperatures

  • Liang Yin
  • Yunki Gwak
  • Choongho YuEmail author
Article

Abstract

Long aligned arrays of crystalline strontium titanate (SrTiO3) nanostructures were synthesized by using simple low-temperature processes that incorporate strontium into titanium oxides. Tubular nanostructures are often confine energy carriers that result in extraordinary transport behaviors in various semiconductors including strontium titanates, which are promising for developing efficient thermoelectric energy conversion materials. However, synthesizing a micron-to-milimeter scale array of one-dimensional ternary nanostructures has been difficult. Moreover, ternary compounds are often obtained as disordered cubic-shape particles at the end of complicated and/or long reactions. In this study, a two-step process—anodization for preparing amorphous titanium oxides and a subsequent thermal annealing process in a mixture of strontium hydroxide, ammonia, and water—was employed. Typical diameter and length of the tubes are ~150 nm and ~160 μm, respectively. It has been found that the amorphous structure of titanium oxides plays an important role in obtaining high-purity long strontium titanate nanotubes at low temperatures (90 and 180 °C) with short reaction times. Comparative and systematic studies with different sample pre-treatments, etching times, temperatures, reaction times, and strontium concentrations revealed reaction mechanisms and key synthesis parameters, which may be utilized to obtain other ternary or quaternary nanostructured compounds such as barium or lead titanates.

Keywords

Strontium Barrier Layer Seebeck Coefficient Strontium Titanate SrF2 

Notes

Acknowledgements

This study was supported by the Thermal Transport Processes and the Solid State and Materials Chemistry Programs in the US National Science Foundation (Award No. 0854467), and the Pioneer Research Center Program through the National Research Foundation of Korea (Grant No. 2010-0002231) funded by the Ministry of Education, Science and Technology (MEST). The authors thank Yang for his assistance in acquiring XRD data.

References

  1. 1.
    Yu C, Scullin ML, Huijben M, Ramesh R, Majumdar A (2008) Appl Phys Lett 92:092118CrossRefGoogle Scholar
  2. 2.
    Yu C, Scullin ML, Huijben M, Ramesh R, Majumdar A (2008) Appl Phys Lett 92:191911CrossRefGoogle Scholar
  3. 3.
    Scullin ML, Yu C, Huijben M, Mukerjee S, Seidel J, Zhan Q, Moore J, Majumdar A, Ramesh R (2008) Appl Phys Lett 92:202113CrossRefGoogle Scholar
  4. 4.
    Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K (2007) Nat Mater 6:129CrossRefGoogle Scholar
  5. 5.
    Ohtomo A, Muller DA, Grazul JL, Hwang HY (2002) Nature 419:378CrossRefGoogle Scholar
  6. 6.
    Huijben M, Rijnders G, Blank DHA, Bals S, Van Aert S, Verbeeck J, Van Tendeloo G, Brinkman A, Hilgenkamp H (2006) Nat Mater 5:556CrossRefGoogle Scholar
  7. 7.
    Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J (2006) Science 313:1942CrossRefGoogle Scholar
  8. 8.
    Siemons W, Koster G, Yamamoto H, Harrison WA, Lucovsky G, Geballe TH, Blank DHA, Beasley MR (2007) Phys Rev Lett 98:196802CrossRefGoogle Scholar
  9. 9.
    Brinkman A, Huijben M, Zalk MV, Huijben J, Zeitler U, Maan JC, Wiel WGVD, Rijnders G, Blank DHA, Hilgenkamp H (2007) Nat Mater 6:493CrossRefGoogle Scholar
  10. 10.
    Kalabukhov A, Gunnarsson R, Borjesson J, Olsson E, Claeson T, Winkler D (2007) Phys Rev B 75:121404CrossRefGoogle Scholar
  11. 11.
    Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto JM, Barthelemy A, Fert A (2007) Phys Rev Lett 98:216803CrossRefGoogle Scholar
  12. 12.
    Muller DA, Nakagawa N, Ohtomo A, Grazul JL, Hwang HY (2004) Nature 430:657CrossRefGoogle Scholar
  13. 13.
    Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca RatonCrossRefGoogle Scholar
  14. 14.
    Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Nature 451:163CrossRefGoogle Scholar
  15. 15.
    Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA, Heath JR (2008) Nature 451:168CrossRefGoogle Scholar
  16. 16.
    Mao Y, Park TJ, Zhang F, Zhou H, Wong SS (2007) Small 3:1122CrossRefGoogle Scholar
  17. 17.
    Mao YB, Banerjee S, Wong SS (2003) J Am Chem Soc 125:15718CrossRefGoogle Scholar
  18. 18.
    O’Brien S, Brus L, Murray CB (2001) J Am Chem Soc 123:12085CrossRefGoogle Scholar
  19. 19.
    Urban JJ, Yun WS, Gu Q, Park H (2002) J Am Chem Soc 124:1186CrossRefGoogle Scholar
  20. 20.
    Yang WD (1999) J Electron Mater 28:986CrossRefGoogle Scholar
  21. 21.
    Jiang W, Gong X, Chen Z, Hu Y, Zhang X, Gong X (2007) Ultrason Sonochem 14:208CrossRefGoogle Scholar
  22. 22.
    Luo Y, Szafraniak I, Nagarajan V, Wehrspohn RB, Steinhart M, Wendorff JH, Zakharov ND, Ramesh R, Alexe M (2003) Integr Ferroelectr 59:1513CrossRefGoogle Scholar
  23. 23.
    Joshi UA, Lee JS (2005) Small 1:1172CrossRefGoogle Scholar
  24. 24.
    Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) J Phys Chem C 111:14992CrossRefGoogle Scholar
  25. 25.
    Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) J Phys Chem C 111:7235CrossRefGoogle Scholar
  26. 26.
    Gavrilov VY, Zenkovets GA, Kryukova GN (1998) In: Delmon B, Jacobs PA, Maggi R, Martens JA, Grange P, Poncelet G (eds) Preparation of catalysts VII, Elsevier, Amsterdam, p 609Google Scholar
  27. 27.
    Hellwege KH, Hellwege AM (1981) Landolt-Bornstein new series: group III, vol 16, Oxides. Springer-Verlag, New York, p 64Google Scholar
  28. 28.
    Mao YB, Banerjee S, Wong SS (2003) Chem Commun 408Google Scholar
  29. 29.
    Martin N, Rousselot C, Rondot D, Palmino F, Mercier R (1997) Thin Solid Films 300:113CrossRefGoogle Scholar
  30. 30.
    Ouyang M, Bai R, Yang L, Chen Q, Han Y, Wang M, Yang Y, Chen H (2008) J Phys Chem C 112:2343CrossRefGoogle Scholar
  31. 31.
    Dachille F, Simons PY, Roy R (1968) Am Miner 53:1929Google Scholar
  32. 32.
    Ovenstone J, Yanagisawa K (1999) Chem Mater 11:2770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentTexas A&M UniversityCollege StationUSA
  2. 2.Materials Science Engineering ProgramTexas A&M UniversityCollege StationUSA

Personalised recommendations